The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum.

Mol Chem Neuropathol

Department of Community and Environmental Medicine, Irvine Occupational Health Center, University of California, USA.

Published: February 1996

Aluminum is suspected to play a role in several neurological disorders. Reactive oxygen species (ROS) lead to oxidative stress, which is thought to be a possible mechanism for neurological damage. Interactions between aluminum and iron, a known promoter of prooxidant events, were studied in cerebral tissues using a fluorescent probe to measure rates of generation of ROS. Al2(SO4)3 alone failed to stimulate ROS production over a wide range of concentrations (50-1000 microM). The aluminum-deferrioxamine chelate in the absence of iron could also not potentiate ROS formation. However, Al2(SO4)3 potentiated FeSO4-induced ROS, with a maximal effect at 10 microM Fe and 500 microM Al. Kaolin, a hydrated aluminum silicate, did not potentiate iron-induced ROS formation. Ferritin had a minor stimulatory effect on ROS generation, but this was not potentiated by the concurrent presence of Al2(SO4)3. Transferrin had no effect on basal rates of ROS generation, but when Al2(SO4)3 was also present, ROS production was enhanced. It is concluded that: 1. There is a potentiation of iron-induced ROS by aluminum salts; 2. Free or complexed aluminum alone is not a key producer of ROS; and 3. High rates of ROS production are unlikely to be owing to the displacement by aluminum iron from its biologically sequestered locations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02815093DOI Listing

Publication Analysis

Top Keywords

ros
12
ros production
12
reactive oxygen
8
oxygen species
8
aluminum iron
8
ros formation
8
iron-induced ros
8
ros generation
8
rates ros
8
aluminum
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!