Intracranial (i.c.) infection of immunocompetent mice with lymphocytic choriomeningitis virus (LCMV) results in immunopathological lethal meningitis mediated by CD8+ cytotoxic T lymphocytes (CTL). Vaccination of immunocompetent mice elicits a CD8+ CTL response that can protect the mice from lethal meningitis. beta 2 microglobulin-deficient (beta 2m-/-) mice are deficient in CD8+ CTL, exhibit CD4+ CTL, and, after i.c. LCMV infection, undergo a less severe meningitis with decreased mortality and additionally develop a wasting disease. Both wasting disease and mortality in beta 2m-/- mice are mediated by CD4+ T cells. We studied the effects of vaccination and challenge dose on weight loss, mortality and viral clearance after i.c. LCMV infection in beta 2m-/- mice. Unvaccinated beta 2m-/- mice had significant weight loss and mortality at doses of 200 and 10(3) p.f.u. LCMV, while a dose of 10(6) p.f.u. LCMV elicited significant mortality but less weight loss. Vaccination with u.v.-inactivated LCMV in complete Freund's adjuvant or with vaccinia virus expressing the LCMV glycoprotein or nucleoprotein genes protected beta 2m-/- mice from mortality but not weight loss after 200 p.f.u. LCMV challenge. Although protected from mortality, beta 2m-/- mice were unable to clear LCMV from their brains or spleens. Therefore, we show that vaccination can protect against lethal immune-meningitis in the face of persistent infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(96)00028-xDOI Listing

Publication Analysis

Top Keywords

beta 2m-/-
24
2m-/- mice
24
weight loss
16
pfu lcmv
12
mice
10
lcmv
9
beta
8
mortality
8
immunocompetent mice
8
lethal meningitis
8

Similar Publications

β-CaSiO based glass-ceramics are among the most reliable materials for electronic packaging. However, developing a CaSiO glass-ceramic substrate with both high strength (>230 MPa) and low dielectric constant (<5) remains challenging due to its polycrystalline nature. The present work has succeeded in synthesizing single-crystalline β-CaSiO for a high-performance glass-ceramic substrate.

View Article and Find Full Text PDF

Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex.

Prog Neurobiol

December 2024

Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany.

Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.

View Article and Find Full Text PDF

Introduction: Patients undergoing chimeric antigen receptor (CAR) T-cell therapy face prolonged treatment timelines and are prone to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) after infusion. Disabilities in physical function and the importance of rehabilitation during CAR-T-cell therapy to maintain physical function have been poorly documented.

Method: We performed a retrospective cohort study to assess changes in exercise tolerance via differences in a 6-min-walking distance (Δ6MWD) and factors influencing it.

View Article and Find Full Text PDF

Multi-wavelength emission fluorescent manganese-nitrogen co-doped carbon dots (Mn, N co-doped CDs) were synthesized by solvothermal method using β-cyclodextrin, O-phenylenediamine, and manganese chloride as raw materials. The prepared Mn, N co-doped CDs were used as fluorescent nanosensing platforms for the detection of metal ions and biomolecules and were found to be capable of fluorescence detection of tannic acid (TA) and hafnium (Hf) ion at 320, 380, and 480 nm excitation wavelengths with multi-response linear ranges of 0.7 ~ 1.

View Article and Find Full Text PDF

A Self-Consistent Molecular Mechanism of β-Microglobulin Aggregation.

J Phys Chem B

December 2024

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.

Despite the consensus on the origin of dialysis-related amyloidosis (DRA) being β-microglobulin (βm) aggregation, the debate on the underlying mechanism persists because of the continuous emergence of βm variant- and pH-dependent contradictory results. By characterizing the native monomeric (initiation) and aggregated fibrillar (termination) states of βm via a combination of two enhanced sampling approaches, we here propose a mechanism that explains the heterogeneous behavior of wild-type (WT) and pathogenic (V27M and D76N) βm variants in physiological and disease-pertinent acidic pH environments. It appears that the higher retainment of monomeric native folds at neutral pH (native-like) distinguishes pathogenic βm mutants from the WT (moderate loss).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!