Thymocartin (TP4, Arg-Lys-Asp-Val) is the 32-35 fragment of the naturally occurring thymic factor (thymopoietin). Here studies on the nasal transport and metabolism of TP4 were performed. Freshly excised bovine nasal mucosa was taken as a model membrane. For permeation studies typical donor-receiver experiments (side-by-side) and finite-dose experiments with small volumes of highly concentrated solutions were carried out. The metabolic pathway of TP4 in nasal mucosa was found to occur according to a typical aminopeptidase cleavage pattern, stepwise forming Lys-Asp-Val and Asp-Val. TP4 metabolism experiments under reflection kinetics showed a saturation profile above 0.5 mumol mL-1. A non-linear kinetic model consisting of three steps in sequence was sufficient to describe the kinetics: for the first step saturable Michaelis-Meat kinetics, and for the second and the third step first-order kinetics were assured. The model was capable of simultaneously fitting the data for the full range of initial concentrations from 0.1 up to 1.0 mumol mL-1. Saturation kinetics was also found to be the prominent feature of the permeation experiments performed. In the lower concentration range (< 0.4 mumol mL-1), transport of TP4 across nasal mucosa was controlled by metabolism, in the higher concentration range (> 0.85 mumol mL-1) diffusion control became more important. We conclude that enhancement of absorption can be achieved when nasal aminopeptidases are saturated, e.g. at high TP4 concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.2042-7158.1996.tb03919.xDOI Listing

Publication Analysis

Top Keywords

nasal mucosa
16
mumol ml-1
16
metabolic pathway
8
thymocartin tp4
8
excised bovine
8
bovine nasal
8
tp4 nasal
8
concentration range
8
tp4
7
nasal
6

Similar Publications

Objective: This study aimed to investigate the effects of cinnamaldehyde (CA) intervention on transient receptor potential melastatin 8 (TRPM8) expression in human nasal epithelial cells (HNECs) and mouse models of chronic rhinosinusitis (CRS) and determine the alleviating effects of CA on CRS.

Methods: HNECs were treated with CA, and the protein levels and mRNA expression of pro-inflammatory cytokines, namely, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), were measured by enzyme-linked immunosorbent assay and real-time reverse-transcription polymerase chain reaction (RT-PCR). TRPM8 expression levels were examined by RT-PCR and western blot.

View Article and Find Full Text PDF

Recently, there has been growing interest in knowing the best hygrometry level during high-flow nasal oxygen and non-invasive ventilation (NIV) and its potential influence on the outcome. Various studies have shown that breathing cold and dry air results in excessive water loss by nasal mucosa, reduced mucociliary clearance, increased airway resistance, reduced epithelial cell function, increased inflammation, sloughing of tracheal epithelium, and submucosal inflammation. With the Coronavirus Disease 2019 pandemic, using high-flow nasal oxygen with a heated humidifier has become an emerging form of non-invasive support among clinicians.

View Article and Find Full Text PDF

Objective: This study seeks to elucidate the role and molecular mechanisms of IL-8 in nasal epithelial cell pyroptosis and its impact on glucocorticoid (GC) resistance.

Methods: We assessed the expression of pyroptosis-related biomarkers and IL-8 in tissues and human nasal epithelial cells (hNECs) from both control and nasal polyp patients using western blot. Their localization was determined through immunohistochemistry and immunofluorescence.

View Article and Find Full Text PDF

Background: At present, the treatment for allergic rhinitis (AR) is only limited to symptom relief, and AR is not able be cured. It is important to find new therapeutic regimens for AR.

Objective: To explore the effect of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) on AR in mice.

View Article and Find Full Text PDF

Rationale: Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI).

Methods: Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!