The effects of reactive oxygen species (ROS) on myocardial antioxidants and on the activity of oxidative mitochondrial enzymes were investigated in the following groups of isolated, perfused rat hearts. I: After stabilization the hearts freeze clamped in liquid nitrogen (n = 7). II: Hearts frozen after stabilization and perfusion for 10 min with xanthine oxidase (XO) (25 U/l) and hypoxanthine (HX) (1 mM) as a ROS-producing system (n = 7). III: Like group II, but recovered for 30 min after perfusion with XO + HX (n = 9). IV: The hearts were perfused and freeze-clamped as in group III, but without XO + HX (n = 7). XO + HX reduced left ventricular developed pressure and coronary flow to approximately 50% of the baseline value. Myocardial content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) increased at the end of XO + HX perfusion, indicating that generation of ROS and lipid peroxidation occurred. Levels of H2O2 and MDA normalized during recovery. Superoxide dismutase, reduced glutathione and alpha-tocopherol were all reduced after ROS-induced injury. ROS did not significantly influence the tissue content of coenzyme Q10 (neither total, oxidized, nor reduced), cytochrome c oxidase, and succinate cytochrome c reductase. The present findings indicate that the reduced contractile function was not correlated to reduced activity of the mitochondrial electron transport chain. ROS depleted the myocardium of antioxidants, leaving the heart more sensitive to the action of oxidative injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(96)00278-xDOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
reduced
6
exogenous reactive
4
species deplete
4
deplete isolated
4
isolated rat
4
rat heart
4
heart antioxidants
4
antioxidants effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!