The red coloration of male stickleback (Gasterosteus aculeatus) possesses signal value in male-male interactions. Therefore, it was predicted that males would learn to associate a red signal more readily than a green signal with a conspecific rival in a Pavlovian conditioning experiment. Males were presented red and green signal lights where one signal was always paired with presentation of a rival (excitatory conditioned stimulus, CS+) and one signal was never paired with presentation of a rival (nonreinforced stimulus, CS-). Males learned the task rapidly, showing conditioned approach and zigzag responses, but CS+ vs. CS- differentiation persisted, even after a prolonged extinction period. In addition, there were no differences in learning rates between fish trained to the red signal as the CS+ and fish trained to the green signal as the CS+. The results suggest that, although males may rapidly learn about rivals, they are not predisposed to associated red (over green) with the appearance of a rival under the conditions of this experiment. Because males must establish and maintain territories in order to nest and mate, learning about neighboring rivals may be an adaptive mechanism by which males more effectively defend their territories and thereby increase their reproductive fitness.

Download full-text PDF

Source
http://dx.doi.org/10.1037/0735-7036.110.4.396DOI Listing

Publication Analysis

Top Keywords

green signal
12
pavlovian conditioning
8
stickleback gasterosteus
8
gasterosteus aculeatus
8
signal
8
red signal
8
experiment males
8
red green
8
signal paired
8
paired presentation
8

Similar Publications

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

Discovery of novel dual tubulin and MMPs inhibitors for the treatment of lung cancer and overcoming drug resistance.

Eur J Med Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China. Electronic address:

Nowadays, hybrid molecule with dual targets activity or effect is regarded as an effective strategy for combating the drug resistance development in cancer therapy. Herein, novel of bifunctional conjugates targeting tubulin and MMPs inhibitors were synthesized. Among them, 15j exhibited robust anticancer activity in vitro and in vivo, with IC values of 0.

View Article and Find Full Text PDF

A Dual-Channel Fluorescence Probe for Early Diagnosis and Treatment Monitoring of Acute Kidney Injury by Detecting HOCl and Cys with Different Fluorescence Signals.

Anal Chem

January 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China.

The pathogenesis of acute kidney injury (AKI) is a multifaceted process involving various mechanisms, with oxidative stress playing a crucial role in its development. Hypochlorite (HOCl) and cysteine (Cys) are indicators of oxidative stress in AKI pathophysiology, directly reflecting the degree of oxidative stress and disease severity. However, their exact mechanism of action in AKI pathophysiology remains unknown.

View Article and Find Full Text PDF

This investigation delves into the extraction of polyphenols from the flowers of Tabebuia rosea using a basic maceration approach with acetone, ethanol, and methanol as solvents. The spectroscopic analysis of the dye obtained confirms the existence of functional groups in the polyphenol extract. The study also explores optoelectronic, fluorescence, and photometric characteristics associated with polyphenols.

View Article and Find Full Text PDF

Phytonanoparticles have emerged as a promising class of biomaterials for enhancing bone regeneration and osseointegration, offering unique advantages in biocompatibility, multifunctionality, and sustainability. This comprehensive review explores the synthesis, characterization, and applications of phytonanoparticles in bone tissue engineering. The green synthesis approach, utilizing plant extracts as reducing and stabilizing agents, yields nanoparticles with intrinsic bioactive properties that can synergistically promote osteogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!