Identification of a novel 135-kDa Grb2-binding protein in osteoclasts.

J Biol Chem

Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Published: December 1996

The tyrosine kinase receptor for macrophage colony-stimulating factor and the non-receptor tyrosine kinase c-Src play critical roles in osteoclast differentiation and function. Since the ubiquitously expressed adaptor protein Grb2 plays an important role in several tyrosine kinase signal transduction pathways, we used a filter binding assay to identify osteoclast proteins that bind to Grb2. In osteoclasts, there were three major Grb2-binding proteins, two of which, mSos and c-Cbl (p120), have been previously identified as Grb2-binding proteins in many cell types. The third protein, p135, had a restricted pattern of expression and was present at high levels in authentic osteoclasts and osteoclast-like cells formed in an in vitro co-culture system. In addition to binding Grb2 in the filter binding assay, p135 was isolated in complexes with endogenous Grb2 from osteoclast cell extracts. The association of p135 and Grb2 was dependent on an intact Src homology 3 domain and furthermore, was shown to preferentially interact with the N-terminal Src homology 3 domain of Grb2, which is similar to the interaction of mSos and Grb2 in other cell types. p135 was not recognized by antibodies against several known Grb2-binding proteins and thus may be a novel Grb2-binding protein.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.271.51.33141DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
12
grb2-binding proteins
12
grb2-binding protein
8
filter binding
8
binding assay
8
cell types
8
src homology
8
homology domain
8
grb2
7
grb2-binding
5

Similar Publications

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.

View Article and Find Full Text PDF

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor (EGFR) gene mutations can lead to distant metastasis in non-small cell lung cancer (NSCLC). When the primary NSCLC lesions are removed or cannot be sampled, the EGFR status of the metastatic lesions are the potential alternative method to reflect EGFR mutations in the primary NSCLC lesions. This review aimed to evaluate the potential of magnetic resonance imaging (MRI) radiomics based on extrapulmonary metastases in predicting EGFR mutations through a systematic reviews and meta-analysis.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!