A new method is described for producing biomedically relevant polymers with precisely defined micron scale surface texture in the x, y, and z planes. Patterned Si templates were fabricated using photolithography to create a relief pattern in photoresist with lateral dimensions as small as 1 micron. Electroless Ni was selectively deposited in the trenches of the patterned substrate. The Ni served as a resilient mask for transferring the patterns onto the Si substrate to depths of up to 8.5 microns by anisotropic reactive ion etching with a fluorine-based plasma. The 3-dimensional (3-D) textured silicon substrates were used as robust, reusable molds for pattern transfer onto poly (dimethyl siloxane), low density poly (ethylene), poly (L-lactide), and poly (glycolide) by either casting or injection molding. The fidelity of the pattern transfer from the silicon substrates to the polymers was 90 to 95% in all three planes for all polymers for more than 60 transfers from a single wafer, as determined by scanning electron microscopy and atomic force microscopy. Further, the 3-D textured polymers were selectively modified to coat proteins either in the trenches or on the mesas by capillary modification or selective coating techniques. These selectively patterned 3-D polymer substrates may be useful for a variety of biomaterial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-4636(199624)33:4<205::AID-JBM1>3.0.CO;2-T | DOI Listing |
Nanotechnology
January 2025
Electronic Sci.&Eng., Xi'an Jiaotong University, 28 Xianning West Road,Beilin District, Xi 'an, Shaanxi Province, China, Xi'an, 710049, CHINA.
The accurate estimation of the temperature distribution of the GaN based power devices and optimization of the device structure is of great significance to possibly solve the self-heating problem, which hinders the further enhancement of the device performances. We present here the operando temperature measurement with high spatial resolution using Raman spectroscopy of AlGaN/GaN high electron mobility transistors (HEMTs) with different device structures and explore the optimization of the device thermal design accordingly. The lateral and depth temperature distributions of the single-finger HEMT were characterized.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
Deep-ultraviolet (DUV) light is essential for applications including fabrication, molecular research, and biomedical imaging. Compact metalenses have the potential to drive further innovation in these fields, provided they utilize a material platform that is cost-effective, durable, and scalable. In this work, we present aluminum nitride (AlN) metalenses as an efficient solution for DUV applications.
View Article and Find Full Text PDFACS Nano
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.
View Article and Find Full Text PDFChempluschem
January 2025
Izmir University of Economics: Izmir Ekonomi Universitesi, Department of Mechanical Engineering, Sakarya Cad. No: 156, 35330, Izmir, TURKEY.
Accurate determination of dielectric properties and surface characteristics of two-dimensional (2D) perovskite nanosheets, produced by chemical exfoliation of layered perovskites, is often hindered by exfoliation agent residues such as tetrabutylammonium (TBA). This study investigates the effect of ultraviolet (UV) light exposure duration on the removal of TBA residues from 2D Ca2NaNb4O13- nanosheets deposited on silicon substrates via Langmuir-Blodgett method using atomic force microscopy (AFM). Nanoscale adhesion forces between silicon AFM tips and nanofilms exposed to UV light for 3, 12, 18, and 24 hours were measured.
View Article and Find Full Text PDFChemistry
January 2025
Karlsruhe Institute of Technology, Institute for biological interfaces 1 (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, GERMANY.
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!