Purification and biochemical characterization of a vacuolar serine endopeptidase induced by glucose starvation in maize roots.

Biochem J

Institut National de la Recherche Agronomique, Station de Physiologie, Végétale Villenave d'Ornon, France.

Published: November 1996

An endopeptidase (designated RSIP, for root-starvation-induced protease) was purified to homogeneity from glucose-starved maize roots. The molecular mass of the enzyme was 59 kDa by SDS/PAGE under reducing conditions and 62 kDa by gel filtration on a Sephacryl S-200 column. The isoelectric point of RSIP was 4.55. The purified enzyme was stable, with no auto-proteolytic activity. The enzyme activity was strongly inhibited by proteinaceous trypsin inhibitors, di-isopropylfluorophosphate, 3,4-dichloroisocoumarin and PMSF, suggesting that the enzyme is a serine protease. The maximum proteolytic activity against different protein substrates occurred at pH 6.5. With the exception of succinyl-Leu-Leu-Val-Tyr-4-methylcoumarin, no hydrolysis was detected with synthetic tryptic, chymotryptic or peptidylglutamate substrates. The determination of the cleavage sites in the oxidized B-Chain of insulin showed specificity for hydrophobic residues at the P2 and P3 positions, indicating that RSIP is distinct from other previously characterized maize endopeptidases. Both subcellular fractionation and immuno-detection in situ indicated that RSIP is localized in the vacuole of the root cells. RSIP is the first vacuolar serine endopeptidase to be identified. Glucose starvation induced RSIP: after 4 days of starvation, RSIP was estimated to constitute 80% of total endopeptidase activity in the root tip. These results suggest that RSIP is implicated in vacuolar autophagic processes triggered by carbon limitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1217929PMC
http://dx.doi.org/10.1042/bj3200283DOI Listing

Publication Analysis

Top Keywords

vacuolar serine
8
serine endopeptidase
8
glucose starvation
8
maize roots
8
rsip
8
purification biochemical
4
biochemical characterization
4
characterization vacuolar
4
endopeptidase
4
endopeptidase induced
4

Similar Publications

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

Disturbed flow (DF) plays a critical role in the development and progression of cardiovascular disease (CVD). Hydrogen sulfide (HS) is involved in physiological processes within the cardiovascular system. However, its specific contribution to DF-induced vascular remodeling remains unclear.

View Article and Find Full Text PDF

CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis).

J Integr Plant Biol

November 2024

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.

Fruit taste quality is greatly influenced by the content of soluble sugars, which are predominantly stored in the vacuolar lumen. However, the accumulation and regulation mechanisms of sugars in most fruits remain unclear. Recently, we established the citrus fruit vacuole proteome and discovered the major transporters localized in the vacuole membrane.

View Article and Find Full Text PDF

Fission yeast Bsd1 is required for ER stress response in Ire1 independent manner.

Mol Biol Rep

November 2024

Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.

Background: Endoplasmic reticulum plays a central role in protein folding and cellular detoxification. NEDD4, a HECT E3 ubiquitin ligase, has been implicated in endoplasmic reticulum stress in humans. In this study, we have explored the role of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!