A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans. | LitMetric

To examine the presence of metabolic cold adaptation in Antarctic isopods, whole animal rates of oxygen uptake (MVo2) and protein synthesis were measured in Glyptonotus antarcticus at 0 degree C and compared with the temperature isopod Idotea rescata at 4 and 14 degrees C. The specific relationship between rates of metabolism and protein synthesis was investigated by injecting animals with cycloheximide, a protein synthesis inhibitor. In G. antarcticus, routine MVo2 was 11.10 +/- 0.89 mumol.kg-1.min-1 (n = 19 animals), and ks was 0.24 +/- 0.04% protein synthesized/day (n = 8 animals). Comparison with I. rescata showed that standardized whole animal MVo2 decreased with temperature (temperature quotient = 1.99), but whole animal ks was considerably lower in the Antarctic isopod; 66 and 22% of total MVo2 was attributable to protein synthesis in G. antarcticus at 0 degree C and I. rescata at 4 degrees C, respectively. The energetic cost of protein synthesis was four times higher in G. antarcticus at 885 +/- 141 mmol ATP/g protein (n = 5 animals) compared with 237 +/- 76 mmol ATP/g protein (n = 6) in I. rescata. G. antarcticus does not show metabolic rate compensation and maintains extremely low ks levels because of the relatively high energetic cost of protein synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.1996.271.5.R1295DOI Listing

Publication Analysis

Top Keywords

protein synthesis
28
cost protein
12
protein
10
antarcticus degree
8
rescata degrees
8
energetic cost
8
mmol atp/g
8
atp/g protein
8
synthesis
7
antarcticus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!