Complement activation is involved in the structural deterioration of bovine pericardial bioprosthetic heart valves.

ASAIO J

Centre de Recherches Chirurgicales, CNRS URA 1431, Association Claude Bernard, Service de Chirurgie Thoracique et Cardiovasculaire, Hopital Henri Mondor, Créteil, France.

Published: March 1997

Disintegrated collagen fibers surrounded with protein deposits are a morphologic feature in torn, folded, and disrupted cusps of pericardial prostheses explanted for clinical dysfunction. New technologies for valve bioprostheses with improved durability require further investigation of molecular mechanisms initiating the deterioration of bioprosthetic valves. The authors' aim was to obtain experimental evidence of biologic factors contributing to the degradation of the bioprosthetic matrix. Clinically failed Mitroflow (22), Hancock (3), Ionescu-Shiley (2), and Sorin (1) valves were explanted after 69-170 months. Non calcific deterioration of the prosthetic matrix was studied with labeled antibodies to plasma proteins and cells. IgG, and complement proteins C1q, C3, and C4 were accumulated close to dissociated collagen bundles (26/28) throughout the prostheses. Fibrin was identified on the cuspal surface and in the deep disrupted areas. The fibrin peptides and proteolytic breakdown products of the complement components, the latter consistent with complement activation and chemotaxis for monocytes, were shown by immunoenzymic assay on Western blots from the valve extracts. The complement activation triggered by the IgG aggregates generates bioactive peptide signals that can activate macrophages (22/28) and neutrophil granulocyte elastase (22/24) able to cooperate with the mechanical stress in the breakdown of the chemically processed, non hemocompatible, and non-self macromolecular matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002480-199609000-00015DOI Listing

Publication Analysis

Top Keywords

complement activation
12
complement
5
activation involved
4
involved structural
4
structural deterioration
4
deterioration bovine
4
bovine pericardial
4
pericardial bioprosthetic
4
bioprosthetic heart
4
heart valves
4

Similar Publications

Severe pregnancy-associated atypical hemolytic uremia syndrome in the context of the COVID-19 pandemic: a novel survival case report.

BMC Pregnancy Childbirth

January 2025

Department of Intensive Care Medicine, Army Medical Center of PLA, No. 10 Changjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.

Background: Pregnancy-associated atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by uncontrolled activation of the complement system during pregnancy or the postpartum period. In the intensive care unit, aHUS must be differentiated from sepsis-related multiple organ dysfunction, thrombotic thrombocytopenic purpura (TTP), hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome. Early recognition of aHUS is critical for effective treatment and improved prognosis.

View Article and Find Full Text PDF

C3AR1 as a target for preeclampsia: from bioinformatics and network pharmacology to experimental validation.

BMC Pregnancy Childbirth

January 2025

Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Background: Preeclampsia, characterized by hypertension and proteinuria during pregnancy, poses significant risks to both mother and fetus. The complement system's aberrant activation, notably the C3AR1, is important to the pathogenesis of preeclampsia, although the precise mechanisms are not fully understood.

Materials And Methods: Utilizing the Comparative Toxicogenomics Database (CTD) and Molecular Signatures Database (MSigDB), we identified complement system targets associated with preeclampsia and environmental pollutants.

View Article and Find Full Text PDF

Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.

View Article and Find Full Text PDF

Spectroscopic and in silico data indicate that phenolic acids interact with aldose reductase with different degrees of affinity at a single binding site.

Int J Biol Macromol

January 2025

INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina. Electronic address:

Our previous studies demonstrated that the enzyme aldose reductase (AR) is activated by its interaction with tubulin, a mechanism which can lead to the emergence of secondary diseases in diabetic patients. We also found that different compounds derived from phenolic acid (CAFs) can prevent this interaction and thus AR activation. Here, we used spectroscopic and bioinformatic techniques to explore the interaction between AR and three CAFs: 3-nitrotyrosine (NTyr), Tyrosine (Tyr), and vanillic acid (Van).

View Article and Find Full Text PDF

DM9CP-8 upon binding microbes activates MASPL-1-C3 axis to regulate the mRNA expressions of IL17s in oysters.

Int J Biol Macromol

January 2025

College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China. Electronic address:

DM9 domain-containing protein (DM9CP) as pattern recognition molecule is involved in regulating the inflammation-related signaling pathway in invertebrates. In the present study, a DM9CP with two tandem DM9 repeats (designated as CgDM9CP-8) was identified from Crassostrea gigas. The mRNA transcript of CgDM9CP-8 was the highest in haemocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!