The human beta-chemokine receptor CCR5 is an important cofactor for entry of human immunodeficiency virus-type 1 (HIV-1). The murine form of CCR5, despite its 82 percent identity to the human form, was not functional as an HIV-1 coreceptor. HIV-1 entry function could be reconstituted by fusion of various individual elements derived from the extracellular region of human CCR5 onto murine CCR5. Analysis of chimeras containing elements from human CCR5 and human CCR2B suggested that a complex structure rather than single contact sites is responsible for facilitation of viral entry. Further, certain chimeras lacking the domains necessary to signal in response to their natural chemokine ligands retained vigorous HIV-1 coreceptor activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.274.5294.1924 | DOI Listing |
Nat Commun
January 2025
Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia.
View Article and Find Full Text PDFCell
January 2025
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Upon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America.
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.
View Article and Find Full Text PDFEBioMedicine
January 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. Electronic address:
Background: Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system.
View Article and Find Full Text PDFASN Neuro
January 2025
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!