To test the hypothesis that the expression of specific proteins on peripheral terminals of primary afferents can be attenuated by intrathecal administration of antisense oligodeoxynucleotides (ODNs), we administered ODNs antisense to the mu-opioid receptor to male Sprague-Dawley rats via chronically implanted intrathecal cannulae. Antisense but not mismatch ODN treatment significantly decreased peripheral (D-Ala2, N-Me-Phe4, Gly5-ol)-enkephalin (DAMGO) inhibition of prostaglandin E2 (PGE2) hyperalgesia. Antisense treatment affected neither the magnitude of PGE2 hyperalgesia nor the antinociception produced by a peripherally administered adenosine A1-agonist. The antinociceptive effects of DAMGO was fully recovered 8 days after cessation of ODN treatment. DAMGO-induced inhibition of voltage-gated Ca2+ currents (VGCC), in cultured dorsal root ganglion (DRG) neurons from rats treated with ODNs, was also significantly reduced by antisense but not mismatch ODNs. Taken together, these observations suggest that intrathecal administration of antisense ODNs can be used to study the function of proteins present in the peripheral terminals of primary afferent neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0304-3940(96)13111-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!