Safe depths for teaching children to dive.

Aust J Sci Med Sport

University of Western Australia, Perth, Australia.

Published: September 1996

Eight stages commonly used to teach diving were analysed for peak vertical velocity; vertical velocity at and following water impact and at previously recommended minimum water depths; maximum depth reached; and relationship between vertical velocity and maximum depth attained at each stage; for 13 male and 13 female children aged 6-8 years. Comparisons of mean water impact vertical velocities and maximum depths attained revealed significantly lower impact vertical velocities (F[6] = 117.39, p < 0.0001) and maximum depths (F[6] = 36.59, p < 0.0001) when performing the sit dive compared to the reference standing dive. At other stages, subjects travelled faster than the critical head velocities shown to cause adult cervical spine damage when passing through previously recommended minimum water depths.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vertical velocity
12
dive stages
8
water impact
8
recommended minimum
8
minimum water
8
water depths
8
maximum depth
8
impact vertical
8
vertical velocities
8
maximum depths
8

Similar Publications

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Optoelectronic tweezers (OET) offer a versatile, programmable, and contactless method for manipulating microscale objects. While factors like AC voltage and light intensity have been extensively studied, the role of light pattern curvature in the performance of OET manipulation remains underexplored. This study investigates how the curvature of light patterns affects the movement of polystyrene microparticles under negative dielectrophoretic (DEP) forces in an OET system.

View Article and Find Full Text PDF

Impact of muscle fatigue on anticipatory postural adjustments during gait initiation.

Front Physiol

January 2025

Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.

Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.

View Article and Find Full Text PDF

Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.

View Article and Find Full Text PDF

This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!