Zinc chelated by iminodiacetic acid linked to an insoluble matrix binds human fibroblast interferon quite selectively at neutral pH in 0.15 M NaCL. On reduction of the pH and increase of the ionic strength, the interferon is eluted. Using a pH gradient at constant high ionic strength, good purification of the interferon can be obtained, up to a final specific activity of 108.5 units/mg of protein. Approximately 60% of the applied activity can be recovered.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human fibroblast
8
fibroblast interferon
8
ionic strength
8
purification human
4
interferon
4
interferon zinc
4
zinc chelate
4
chelate affinity
4
affinity chromatography
4
chromatography zinc
4

Similar Publications

Background: Injectable platelet-rich fibrin (i-PRF) has the capacity to release great amounts of several growth factors, as well as to stimulate increased fibroblast migration and the expression of collagen, transforming growth factor β, and platelet-derived growth factor. Consequently, i-PRF can be used as a bioactive agent to promote periodontal tissue regeneration.

Objective: We aim to compare and evaluate the effectiveness of i-PRF in periodontal tissue regeneration.

View Article and Find Full Text PDF

Amphiphilic Polyaspartamide Derivatives with Cholesterol Introduction Enhanced Ex Vivo mRNA Transfection Efficiency to Natural Killer Cells.

Biomacromolecules

January 2025

Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity.

View Article and Find Full Text PDF

Introduction And Hypothesis: The relationship between autophagy and pelvic organ prolapse (POP) remains unknown. The aim of this novel experimental study, utilizing tissue samples derived from women undergoing gynecological surgery, is to investigate the role of autophagy in mitigating collagen degradation in human vaginal fibroblasts induced by oxidative stress, with particular emphasis on its implications in the pathogenesis of POP. Exploring the role of autophagy in protecting against collagen degradation and cellular senescence in human vaginal fibroblasts under oxidative stress may offer new insights into therapeutic strategies for conditions such as POP.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!