Antibody production to dinitrophenyl-keyhole limpet haemocyanin (DNP-KLH) served as the immune parameter to divergently select carp (Cyprinus carpio L.) to produce high- and low-responder F1 hybrid lines. Antibody production to trinitrophenyl-lipopolysaccharide (TNP-LPS) and to DNP-KLH were similar in magnitude. By contrast, some high-responder lines were low responders to DNP-human serum albumin, and vice versa. Low-responder carp were relatively susceptible to infection with the parasite Trypanoplasma borreli. This suggested that at least one gene with a major influence on resistance differed between the two homozygous parents (69, 85) used to generate the high- and low-responder homozygous families, respectively. The isogenic lines showed no within-line variation in DNA fingerprints, but differed with respect to their MhcCyca-DAB genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2052.1996.tb00975.xDOI Listing

Publication Analysis

Top Keywords

antibody production
12
carp cyprinus
8
cyprinus carpio
8
high- low-responder
8
characterization isogenic
4
isogenic carp
4
lines
4
carpio lines
4
lines genetically
4
genetically determined
4

Similar Publications

Introduction: Periodontitis is associated with rheumatoid arthritis (RA). One hypothesis posits that this connection arises from the formation of autoantibodies against citrullinated proteins (ACPA) in inflamed gums, possibly triggered by . We previously demonstrated an increased antibody response to arginine gingipains (anti-Rgp IgG), not only in individuals with severe periodontitis compared to controls, but in RA versus controls, with an association to ACPA.

View Article and Find Full Text PDF

Mechanistic models of humoral kinetics following COVID-19 vaccination.

J R Soc Interface

January 2025

Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.

COVID-19 vaccine programmes must account for variable immune responses and waning protection. Existing descriptions of antibody responses to COVID-19 vaccination convey limited information about the mechanisms of antibody production and maintenance. We describe antibody dynamics after COVID-19 vaccination with two biologically motivated mathematical models.

View Article and Find Full Text PDF

Steatohepatitis-induced vascular niche alterations promote melanoma metastasis.

Cancer Metab

January 2025

Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, 68167, Germany.

Background: In malignant melanoma, liver metastases significantly reduce survival, even despite highly effective new therapies. Given the increase in metabolic liver diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), this study investigated the impact of liver sinusoidal endothelial cell (LSEC)-specific alterations in MASLD/MASH on hepatic melanoma metastasis.

Methods: Mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for ten weeks to induce MASH-associated liver fibrosis, or a CDAA diet or a high fat diet (HFD) for shorter periods of time to induce early steatosis-associated alterations.

View Article and Find Full Text PDF

Bacterial mastitis in dairy cow is often caused by a combination of bacterial infections, such as Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae. Currently, there is no effective vaccine against the disease. Therefore, we constructed a recombinant subunit vaccine by fusing gene fragments of E.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!