Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense.

Arch Microbiol

Max-Planck-Institut für Biochemie, Abteilung Membranbiochemie, D-82152 Martinsried, Germany.

Published: November 1996

Growth and magnetite formation in Magnetospirillum gryphiswaldense MSR-1 were found close to the maximum at an extracellular iron concentration of 15-20 microM. Ferrous iron was incorporated by a slow, diffusion-like process. Several iron chelators including various microbial siderophores were unable to promote transport of iron into the cells. In contrast, spent culture fluids stimulated the uptake of ferric iron in iron-depleted cells at a high rate, whereas fresh medium and transport buffer were unable to promote iron uptake. However, no siderophore-like compound could be detected in spent culture fluids by the Chrome Azurol S assay. Ferric iron uptake followed Michaelis-Menten kinetics with a Km of 3 microM and a Vmax of 0.86 nmol min-1 (mg dry weight)-1, suggesting a comparatively low-affinity, but high-velocity transport system. Iron incorporation was sensitive to 2,4-dinitrophenol and carbonylcyanide-m-chlorophenylhydrazone, indicating an energy-dependent transport process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002030050387DOI Listing

Publication Analysis

Top Keywords

iron uptake
12
iron
9
magnetospirillum gryphiswaldense
8
unable promote
8
spent culture
8
culture fluids
8
ferric iron
8
iron-limited growth
4
growth kinetics
4
kinetics iron
4

Similar Publications

Function, structure, and regulation of Iron Regulated Transporter 1.

Plant Physiol Biochem

December 2024

Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China. Electronic address:

Iron (Fe) is an essential mineral for the growth and development of plants, as it serves as a vital co-factor for a multitude of enzymes that participate in a variety of physiological processes. Plants obtain Fe from the soil through their Fe uptake systems. Non-graminaceous plants utilize a reduction-based system for Fe uptake, which involves the conversion of Fe(III) to Fe(II) and subsequent absorption of Fe(II).

View Article and Find Full Text PDF

Unregulated, systemic inflammation negatively impacts health and production in dairy cows. Soluble mediators and platelets have been studied for their expansive role in mediating inflammation. Our objectives were to compare the plasma oxylipin and endocannabinoid profiles, and the platelet and plasma proteomic profiles of healthy cows to cows experiencing elevated systemic inflammation as indicated by plasma haptoglobin (Hp) concentrations.

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence.

Sci Rep

December 2024

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.

Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.

View Article and Find Full Text PDF

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!