Uroguanylin and guanylin are structurally related peptides that activate an intestinal form of membrane guanylate cyclase (GC-C). Guanylin was isolated from the intestine, but uroguanylin was isolated from urine, thus a tissue source for uroguanylin was sought. In these experiments, uroguanylin and guanylin were separated and purified independently from colonic mucosa and urine of opossums. Colonic, urinary, and synthetic forms of uroguanylin had an isoelectric point of approximately 3.0, eluted from C18 reverse-phase high-performance liquid chromatography (RP-HPLC) columns at 8-9% acetonitrile, elicited greater guanosine 3', 5'-cyclic monophosphate (cGMP) responses in T84 cells at pH 5.5 than pH 8, and were not cleaved and inactivated by pretreatment with chymotrypsin. In contrast, colonic, urinary, and synthetic guanylin had an isoelectric point of approximately 6.0, eluted at 15-16% acetonitrile on C18 RP-HPLC columns, stimulated greater cGMP responses in T84 cells at pH 8 than pH 5.5, and were inactivated by chymotrypsin, which hydrolyzed the Phe-Ala or Try-Ala bonds within guanylin. Uroguanylin joins guanylin as an intestinal peptide that may participate in an intrinsic pathway for cGMP-mediated regulation of intestinal salt and water transport. Moreover, uroguanylin and guanylin in urine may be derived from the intestinal mucosa, thus implicating these peptides in an endocrine mechanism linking the intestine with the kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1996.270.4.G708 | DOI Listing |
J Pept Sci
January 2025
Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.
Guanylate cyclase C (GC-C), a receptor expressed on the apical membrane of intestinal mucosal cells, is activated by heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli, as well as the endogenous ligands guanylin and uroguanylin. In this study, novel peptides that interact with GC-C were generated using the cDNA display method, and their binding affinity and biological activity were evaluated. While the linear peptide library did not yield peptides with sufficient affinity for GC-C, three cyclic peptides (GCC-P1, GCC-P2, and GCC-P3), each containing two cysteine residues within a 15-residue sequence, were obtained from a cyclic peptide library containing nine-residue random sequences.
View Article and Find Full Text PDFJ Pept Sci
January 2025
Marine Biotechnology, NORCE Norwegian Research Centre, Bergen, Norway.
Enterotoxigenic Escherichia coli (ETEC) strains, which produce the heat-stable enterotoxin (ST) either alone or in combination with the heat-labile enterotoxin, contribute to the bulk of the burden of child diarrheal disease in resource-limited countries and are associated with mortality. Developing an effective vaccine targeting ST presents challenges due to its potent enterotoxicity, non-immunogenicity, and the risk of autoimmune reaction stemming from its structural similarity to the human endogenous ligands, guanylin, and uroguanylin. This study aimed to assess a novel synthetic vaccine carrier platform employing a single chemical coupling step for making human ST (STh) immunogenic.
View Article and Find Full Text PDFJ Biol Chem
January 2024
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India. Electronic address:
Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events.
View Article and Find Full Text PDFFront Oncol
October 2023
Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Colorectal cancer (CRC) is a devastating disease that affects millions of people worldwide. Recent research has highlighted the crucial role of the guanylate cyclase-C (GC-C) signaling axis in CRC, from the early stages of tumorigenesis to disease progression. GC-C is activated by endogenous peptides guanylin (GU) and uroguanylin (UG), which are critical in maintaining intestinal fluid homeostasis.
View Article and Find Full Text PDFActa Stomatol Croat
September 2023
Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia.
Objectives: Guanylin peptides are considered to be the only intrinsic regulators of salivary glands secretion. Therefore, the aim of this study was to determine the effects of systemic uroguanylin (UGN) of the salivary flow and ion composition. Besides, the objective was to investigate whether those effects include activation of guanylate cyclase C (GC-C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!