Basic fibroblast growth factor (bFGF) has strong angiogenic properties and also promotes wound healing of corneal epithelium. However, only little is known about the natural presence of bFGF at the ocular surface. In the present study we therefore investigated the presence of bFGF in the corneas of 10 guinea pigs. Positive staining for bFGF was found in the epithelium of all specimens, preferentially in the basal cell layer where the staining was entirely intracytoplasmatical. From base to apex a condensation process was detectable with highest intensity granular staining in the cytoplasm of the apical cells and a dense layer of pFGF at the surface of the epithelium without detectable cell structures. There was no specific staining in the stroma or endothelium. The possible role of pFGF in corneal physiology and neovascularization is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000267742 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.
Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.
View Article and Find Full Text PDFACS Sens
January 2025
School of Basic Medical Science, Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an 710021, China.
To enhance exploration on tumor stem-like cells (TSCs) without altering their cellular biological characteristics, researchers advocate for application of single-cell-derived tumor-spheres (STSs). TSCs are regulated by their surrounding microenvironment, making it crucial to simulate a tumor microenvironment to facilitate STS formation. Recently, exosomes that originated from the tumor microenvironment have emerged as a promising approach for mimicking the tumor microenvironment.
View Article and Find Full Text PDFThis study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.
View Article and Find Full Text PDFStem Cells
January 2025
Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.
Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!