Damage to vascular endothelium may play an important role during metastasis. We used a three-dimensional model of tumour cell extravasation to test the hypothesis that certain types of tumour cells are able to induce vascular endothelial cell injury. Multicellular tumour spheroids (MCTS) of 14 human cancer cell lines and spheroids from two benign cell lines were transferred onto confluent monolayers of human endothelial cells (EC). MCTS from 4 of 7 melanoma cell lines induced damage of the endothelium which was closely associated with tumour cell attachment. Endothelial cell injury became evident morphologically by loss of cell membrane integrity and sensitivity to shear stress. Similar results were obtained with EC derived from human umbilical veins, umbilical arteries and saphenous veins. Addition of the oxygen radical scavenger catalase showed a dose- and time-dependent inhibition (up to 48 h) of EC damage in the case of the melanoma cell lines ST-ML-11, ST-ML-14 and SK-MEL-28. The scavenging enzyme superoxide dismutase proved to be protective (up to 12 h) in ST-ML-12 MCTS. In contrast, allopurinol, deferoxamine mesylate, ibuprofen, nor-dihydroguaretic acid, soybean trypsin inhibitor or aprotinin had no protective effect. None of the non-melanoma cancer cell lines or benign cells induced endothelial cell damage. Endothelial injury has been shown to enhance the process of metastasis. Our results suggest that free-radical-mediated endothelial cell damage may be one of the mechanisms contributing to the devastating metastatic potential of melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00193937DOI Listing

Publication Analysis

Top Keywords

endothelial cell
20
cell lines
20
cell
13
cell damage
12
tumour cell
8
cell injury
8
cancer cell
8
melanoma cell
8
endothelial
7
damage
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!