(Methylcarbamoyl)triazenes have been shown to be effective cancer chemotherapeutic agents in a number of biological systems. Because of their chemical stability, it is likely that their activity in vivo is the result of a metabolic activation process. Previous studies have shown that 1-(2-chloroethyl)-3-methyl-3-(methylcarbamoyl)triazene (CMM) and 1-(2-chloroethyl)-3-benzyl-3-(methylcarbamoyl)triazene (CBzM) are metabolized by rat liver microsomes in the presence of NADPH to yield the ((hydroxymethyl)carbamoyl)triazene analogs of the parent compounds. The present studies show that both compounds are also oxidized at the chloroethyl substituent to yield chloroacetaldehyde and a substituted urea. In the case of CBzM metabolism, 47% of the metabolized parent compound was recovered as benzylmethylurea, 8% was recovered as benzylurea, and 26% was recovered as the ((hydroxymethyl)carbamoyl)-triazene and carbamoyltriazene metabolites. These results suggest that the chloroethyl group is the favored initial site of metabolism. In reaction mixtures containing initial concentrations of 300 microM CBzM, 78 microM chloroacetaldehyde was produced, as compared to 58 microM chloroacetaldehyde produced from the metabolism of 300 microM CMM. The formation of chloroacetaldehyde, a known mutagenic DNA alkylating agent, may explain the biological activity of these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx9500639DOI Listing

Publication Analysis

Top Keywords

formation chloroacetaldehyde
8
biological activity
8
300 microm
8
microm chloroacetaldehyde
8
chloroacetaldehyde produced
8
chloroacetaldehyde
5
oxidative metabolism
4
metabolism 1-2-chloroethyl-3-alkyl-3-
4
1-2-chloroethyl-3-alkyl-3- methylcarbamoyltriazenes
4
methylcarbamoyltriazenes formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!