Convenient synthesis of rac-glycidaldehyde from rac-but-3-ene-1,2-diol and (R)-glycidaldehyde from D-mannitol are described. (R)-Glycidaldehyde (1) reacts with guanosine in water (pH 4-11, faster reaction at higher pH) to give initially 6(S)-hydroxy-7(S)-(hydroxymethyl)-3-(beta-D-ribofuranosyl)-5,6,7- trihydroimidazo[1,2-alpha]purin-9(3H)-one (7a) and 6(S),7(R)-dihydroxy-3-(beta-D-ribofuranosyl)-5,6,7,8- tetrahydropyrimido[1,2- alpha]purin-10(3H)-one (8a). The former decomposes to 7-(hydroxymethyl)-5,9-dihydro-9-oxo-3-(beta-D-ribofuranosyl)imidazo[1,2- alpha]purine (3a), 5,9-dihydro-9-oxo-3-(beta-D-ribofuranosyl)imidazo[1,2-alpha]purine (5a, 1,N2-ethenoguanosine), and formaldehyde, while the latter adduct is relatively stable. The position of the hydroxymethyl group on the imidazo ring of 7-(hydroxymethyl)-5,9-dihydro-9-oxo-3-(beta-D-ribofuranosyl)imidazo-[1,2 - alpha]purine was proved by 13C NMR analysis of adducts derived from [1-15N]guanosine and [amino-15N]guanosine. At longer reaction times, the adduct 7,7'-methylenebis[5,9-dihydro-9-oxo-3-(beta-D-ribofuranosyl)imidazo[1,2- alpha]purine (4a) is formed from guanosine and glycidaldehyde. The structure analysis of this adduct was also aided by 13C NMR analysis of the 15N-labeled adduct derived from [1-15N]guanosine. Analogous adducts were obtained from the reaction between glycidaldehyde and deoxyguanosine. Mechanisms of formation of the adducts from glycidaldehyde and guanosine/deoxyguanosine are proposed and supported by model studies with simple amines. The formaldehyde produced in the reactions described reacts with guanosine to give the known adduct N2-(hydroxymethyl)guanosine (9).

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx950057cDOI Listing

Publication Analysis

Top Keywords

mechanisms formation
8
formation adducts
8
reacts guanosine
8
13c nmr
8
nmr analysis
8
derived [1-15n]guanosine
8
adduct
5
adducts
4
adducts reactions
4
glycidaldehyde
4

Similar Publications

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Prey depletion, interspecific competition, and the energetics of hunting in endangered African wild dogs, .

Proc Natl Acad Sci U S A

February 2025

Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales SA2 8PP, United Kingdom.

Large herbivores are in decline in much of the world, including sub-Saharan Africa, and true apex carnivores like the lion () decline in parallel with their prey. As a consequence, competitively subordinate carnivores like the African wild dog () are simultaneously experiencing a costly reduction in resources and a beneficial reduction in dominant competitors. The net effect is not intuitively obvious, but wild dogs' density, survival, and reproduction are all low in areas that are strongly affected by prey depletion.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!