Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures.

J Biomater Sci Polym Ed

Department of Biochemistry and Biophysics, Silesian Medical Academy, Sosnowiec, Poland.

Published: October 1996

The dependence of the d.c. conductivity on the hydration and temperature (293-343 K) for synthetic DOPA-melanin polymer is presented. The hydration state of the melanin has been changed by varying the humidity conditions around the sample. It has been shown, that in the range of relative humidity values (0-100%), changes in the hydration state of melanin have predominant influence on electrical conductivity (10(-13)-10(-5)S cm-1) in comparison to temperature. The influence of the two forms of water on the conductivity--the first form adsorbed mainly on the melanin surface and easily removed by drying, and the second one incorporated into the inner structure of the polymer, has been investigated. The temperature dependence of the conductivity in vacuum (0.8 and 0.04 mb) and thermal activation energy values (0.49-0.76 eV) for cooling and heating curves have been determined. The relationship between thermal activation energy and preexponential factor sigma 0 (compensation effect) and possible charge transport mechanisms are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1163/156856295x00490DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
8
synthetic dopa-melanin
8
dopa-melanin polymer
8
dependence conductivity
8
hydration state
8
state melanin
8
thermal activation
8
activation energy
8
conductivity synthetic
4
hydration
4

Similar Publications

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Portable devices for periodic monitoring of bioelectrical impedance along meridian pathways in healthy individuals.

Biomed Eng Online

January 2025

Department of Cardiovascular Surgery, Division of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, No.6 of Fucheng Road, Haidian District, Beijing, 100853, China.

Objective: This study aims to investigate the monthly variation patterns of bioelectrical impedance (BEI) along 24 meridian pathways in healthy individuals.

Methods: A cohort of 684 healthy middle-aged participants from North China was enrolled between July 1, 2017, and September 5, 2020. BEI measurements were consistently recorded along the 24 meridian pathways over the study period.

View Article and Find Full Text PDF

Background: The oxidative handicap hypothesis posits that testosterone-dependent traits, such as muscle mass and strength, may be costly to develop due to testosterone's pro-oxidative properties, leading to increased oxidative stress. This hypothesis suggests that only individuals with superior biological conditions can afford these costs. This study examines the oxidative handicap hypothesis, exploring the relationship between muscle mass or handgrip strength and oxidative stress markers in men.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!