A thorough investigation of the acrylamide fluorescence quenching of F75TetR, a mutant of the Tn10-encoded TetR repressor containing a single Trp residue at position 43, was carried out. The Trp-43 residue is located in a helix alpha-turn-helix alpha (H-t-H) motif involved in the specific binding of F75TetR to the operator site in specific DNA. Distinct Ranges of acrylamide concentration have been assumed. At acrylamide concentrations below 0.15-0.2 M (a usual range of values in fluorescence quenching studies) the observed limited tertiary structure change induced by acrylamide is consistent with a noncooperative local unfolding of the DNA-binding domain. It is suggested that penetration of the neutral quencher could cause the deletion of a hydrophobic tertiary structure contact, partly involving TrP-43, responsible for the anchoring of the H-t-H motif inside the three-helix protein bundle, characterizing the N-terminal part. Correspondingly, the affinity of the mutant repressor for the operator was shown to decrease substantially (about five orders of magnitude), seemingly losing its specificity. A subsequent phase, up to 0.8 M acrylamide, was observed in which the involved intermediate protein structure is not further perturbed, nor is DNA binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01887401 | DOI Listing |
Asia Pac J Oncol Nurs
December 2025
Department of Nursing, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Objective: This study was aimed at investigating the network structures of fatigue symptoms in patients with advanced cancer, with a focus on identifying the central symptom-an aspect crucial for targeted and effective fatigue symptom management.
Methods: In this cross-sectional study, patients with advanced cancer were recruited from the cancer treatment center of a tertiary hospital in China between January and December of 2022. Symptom occurrence and severity were assessed with the Cancer Fatigue Scale.
BMC Med Educ
January 2025
Health Professions Education Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Background: Educational research highlights active approaches to learning are more effective in knowledge retention and problem-solving. It has long been acknowledged that adapting to more active ways of learning form part of the challenge for new university students as the pedagogical distance between the didactical approach largely followed by secondary school systems the world over differs quite significantly from the often more student-led, critical approach taken by universities. University students encounter various learning challenges, particularly during the transition from secondary school to university.
View Article and Find Full Text PDFBMC Cancer
January 2025
Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China.
Background: CD3 + CD20 + T cells (T cells) are a subset of lymphocytes in the human body that are associated with inflammation. They originate from T cells interacting with B cells, and their levels are abnormally elevated in individuals with immune disorders, as well as in some cancer patients. The interplay between tumor immunity and inflammation is intricate, yet the specific involvement of T cells in local tumor immunity remains uncertain, with limited research on their subtypes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.
View Article and Find Full Text PDFJ Org Chem
January 2025
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
The selective oxidative cleavage and functionalization of C(OH)-C bonds in tertiary alcohols harbor immense feasibility in organic synthesis and enable the production of high value-added chemicals from renewable biomass. However, it remains a challenge, owing to the inherent kinetic inertness and thermodynamic stability of C(OH)-C bonds and the lack of C-H. Taking the huge potential and challenge of C(OH)-C bond activation and functionalization into consideration, herein, we show the first example of an inexpensive bifunctional ferric nitrate catalyst for catalytic direct oxidation of structurally distinct tertiary alcohols to esters with environmentally benign molecular oxygen as an oxidant and MeOH as a solvent, without the assistance of any additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!