The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy.

J Protein Chem

Cellular and Microscopic Research, Abbott Laboratories, Abbott Park, Illinois 60064, USA.

Published: February 1996

Amyloid-beta (A beta) is the major protein component of neuritic plaques found in Alzheimer's disease. Evidence suggests that the physical aggregation state of A beta directly influences neurotoxicity and specific cellular biochemical events. Atomic force microscopy (AFM) is used to investigate the three-dimensional structure of aggregated A beta and characterize aggregate/fibril size, structure, and distribution. Aggregates are characterized by fibril length and packing densities. The packing densities correspond to the differential thickness of fiber aggregates along a zeta axis (fiber height above the x-y imaging surface). Densely packed aggregates ( > or = 100 nm thick) were observed. At the edges of these densely packed regions and in dispersed regions, three types of A beta fibrils were observed. These were classified by fibril thickness into three size ranges: 2-3 nm thick, 4-6 nm thick, and 8-12 nm thick. Some of the two thicker classes of fibrils exhibited pronounced axial periodicity. Substructural features observed included fibril branching or annealing and a height periodicity which varied with fibril thickness. When identical samples were visualized with AFM and electron microscopy (EM) the thicker fibrils (4-6 nm and 8-12 nm thick) had similar morphology. In comparison, the densely packed regions of approximately > or = 100 nm thickness observed by AFM were difficult to resolve by EM. The small, 2- to 3-nm-thick, fibrils were not observed by EM even though they were routinely imaged by AFM. These studies demonstrate that AFM imaging of A beta fibrils can, for the first time, resolve nanometer-scale, zeta-axis, surface-height (thickness) fibril features. Concurrent x-y surface scans of fibrils reveal the surface submicrometer structure and organization of aggregated A beta. Thus, when AFM imaging of A beta is combined with, and correlated to, careful studies of cellular A beta toxicity it may be possible to relate certain A beta structural features to cellular neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01887400DOI Listing

Publication Analysis

Top Keywords

densely packed
12
beta
9
atomic force
8
force microscopy
8
aggregated beta
8
packing densities
8
packed regions
8
beta fibrils
8
fibrils observed
8
fibril thickness
8

Similar Publications

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Recreating Silk's Fibrillar Nanostructure by Spinning Solubilized, Undegummed Silk.

Adv Mater

January 2025

Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia.

The remarkable toughness (>70 MJ m) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin.

View Article and Find Full Text PDF

The impact of colloid-solvent dynamic coupling on the coarsening rate of colloidal phase separation.

J Colloid Interface Sci

January 2025

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:

Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).

View Article and Find Full Text PDF

Evaluation of radiation therapy on grafted and non-grafted defects: an experimental rat model.

J Appl Oral Sci

January 2025

Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil.

Objective: This study aimed to assess the effects of a single-dose radiation therapy (15 Gy) on grafted and non-grafted defects, bone microarchitecture, and collagen maturity.

Methodology: Bone defects were surgically created in rat femurs. The right femur defect was filled with blood clot (group "Clot") and the left femur defect by deproteinized bovine bone mineral graft (group "Xenograft").

View Article and Find Full Text PDF

Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!