Phosphorylated neurofilament expression and resistance to kainate toxicity.

Brain Res Bull

Unit of Neurobiology and Cellular Pathology, Laboratory of Histology and Cellular Biology, Faculty of Medicine, Limoges, France.

Published: March 1997

Antibodies directed against phosphorylated neurofilaments, which are major proteins of the neuronal cytoskeleton, usually do not label neuronal cell bodies except in some neurological diseases. In the present study, we show that in rat cortical cell cultures exposed to kainate there is an inverse relation between neuronal survival and the proportion of neuronal cell bodies stained by a monoclonal antibody (clone SMI31) that recognizes extensively phosphorylated neurofilament proteins (150 kDa and 200 kDa). The immunoblot analysis also revealed an increase in 150-kDa phosphorylated neurofilament expression in kainate-treated cell cultures. Furthermore, the direct quantification of viable neurons SMI31-immunopositive or immunonegative in perikarya showed that the majority of neurons resistant to kainate toxicity expressed phosphorylated neurofilaments in their cell bodies. The percentage of viable neurons displaying SMI31-immunoreactivity in their cell bodies increased from 14.7% in control cultures to 30.0% in cultures treated with 10 microM kainate. These data suggest that phosphorylated neurofilament expression is associated with a reduced cell vulnerability to excitotoxicity induced by kainate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0361-9230(96)00193-1DOI Listing

Publication Analysis

Top Keywords

phosphorylated neurofilament
16
cell bodies
16
neurofilament expression
12
kainate toxicity
8
phosphorylated neurofilaments
8
neuronal cell
8
cell cultures
8
viable neurons
8
cell
7
phosphorylated
6

Similar Publications

Introduction: Sleep disturbances are associated with Alzheimer's disease (AD) and Alzheimer's disease and related dementias (ADRD), but the relationship between sleep architecture, particularly rapid eye movement (REM) sleep, and AD/ADRD biomarkers remains unclear.

Methods: We enrolled 128 adults (64 with Alzheimer's disease, 41 with mild cognitive impairment [MCI], and 23 with normal cognition [NC]), mean age 70.8 ± 9.

View Article and Find Full Text PDF

Early-onset Alzheimer's disease constitutes ∼5-10% of Alzheimer's disease. Its clinical characteristics and biomarker profiles are not well documented. To compare the characteristics covering clinical, neuropsychological and biomarker profiles between patients with early- and late-onset Alzheimer's disease, we enrolled 203 patients (late-onset Alzheimer's disease = 99; early-onset Alzheimer's disease = 104) from a Chinese hospital-based cohort, the Shanghai Memory Study.

View Article and Find Full Text PDF

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

Background: For clinical implementation of Alzheimer's disease (AD) blood-based biomarkers (BBMs), knowledge of short-term variability, is crucial to ensure safe and correct biomarker interpretation, i.e., to capture changes or treatment effects that lie beyond that of expected short-term variability and considered clinically relevant.

View Article and Find Full Text PDF

Background And Objectives: Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder influenced by genetic and environmental factors. Conditions such as type 2 diabetes (T2D), cardiovascular disease, obesity, depression, and obstructive sleep apnea (OSA) increase AD risk and progression. This study aimed to examine the genetic predisposition to these conditions and their effect on AD pathophysiology, risk, and progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!