We describe a Raman imaging microscope that produces high-fidelity, large format Raman images and Raman spectra from samples as small as 1 micron in size. Laser illumination is delivered to the object by means of an infinity corrected microscope objective, either by a galvanometer scanning system or a widefield fibre optic. Wavelength selection of Raman scattered emission is achieved by an acousto-optic tunable filter (AOTF), which maintains image fidelity and provides either continuous or random wavelength selection. The collimated AOTF output is imaged first by a tube lens and then by a projection lens onto a cooled silicon CCD array. Instrument features, including factors that determine the system's spatial and spectral resolution, and design considerations are discussed in detail. Images and spectra of test objects and samples that demonstrate the capability of this imaging spectrometer are presented. The potential of intrinsic chemical imaging is discussed in terms of its use in the analyses of a variety of chemical and biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2818.1996.1130670.x | DOI Listing |
Metabolites
January 2025
Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
This study evaluated metabolites and lipid composition in the calf muscles of Type 2 diabetes mellitus (T2DM) patients and age-matched healthy controls using multi-dimensional MR spectroscopic imaging. We also explored the association between muscle metabolites, lipids, and intra-abdominal fat in T2DM. Participants included 12 T2DM patients (60.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States.
Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China. Electronic address:
Ethnopharmacological Relevance: Pseudostellaria heterophylla (Tài Zǐ Shēn, TZS) is a traditional Chinese medicine with spleen and qi benefits. Its immunomodulatory, anti-fatigue, anti-stress, and lipid metabolism regulation effects have been clinically confirmed, but its role in meibomian gland dysfunction (MGD) is still unclear.
Aim Of The Study: This study aims to investigate the effect and mechanism of action of TZS in treating MGD.
Transl Vis Sci Technol
January 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.
Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.
Nanotoxicology
January 2025
Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia.
In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!