Download full-text PDF

Source

Publication Analysis

Top Keywords

[method photoelectric
4
photoelectric recording
4
recording individual
4
individual components
4
components mandibular
4
mandibular masticatory
4
masticatory movements]
4
[method
1
recording
1
individual
1

Similar Publications

Size Effect on Ultrafast Dynamics of the Photoexcited Be Electron in Be@C (2 = 60, 70, and 80).

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.

View Article and Find Full Text PDF

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

All Light Controlled Five State Logic Gates on a Ferroelectric Ceramic Chip.

Adv Mater

January 2025

State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Differentiating photoelectric response in a single material with a simple approach is desirable for all-in-one optoelectronic logical devices. In ferroelectric materials, significantly distinct photoelectric features should be observed if they are in diverse polarization states, unveiling a possible pathway to realize multifunctional optoelectronic logic gates through ferroelectric polarization design. In this study, the Ti self-doping strategy is first applied to 0.

View Article and Find Full Text PDF

Multifunctional applications enabled by tunable multi-emission and ultra-broadband VIS-NIR luminescence energy transfer in Sn/Mn-doped lead-free Zn-based metal halides.

Mater Horiz

January 2025

School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!