The present work is aimed at investigating the effects of myocardial infarction and ischemia on induction of ventricular fibrillation. Electrophysiologic effects of global and local ischemia (variation of the dispersion of refractory periods as well as conduction velocity) on initiation of reentry mechanisms was studied by means of computer simulations based on a cellular automata model of propagation of activation wave through a ventricular surface element. A local area of ischemia where effects of the dispersion of refractory periods are investigated is then simulated. This is made using a Gaussian distribution characterized by its mean and standard deviation. These simulations show that ischemia is capable of initiating reentry phenomena which propagate through the whole ventricle; they are responsible for ventricular fibrillation which causes sudden cardiac death, even when ischemia only involves limited parts of the myocardium. Statistical study of the probability of reentries as a function of both of the size of ischemic zones and the rate of dispersion of refractory periods shows that the latter parameter is of primary importance in triggering cardiac reentries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00713559DOI Listing

Publication Analysis

Top Keywords

ventricular fibrillation
12
dispersion refractory
12
refractory periods
12
myocardial infarction
8
infarction ischemia
8
ischemia induction
8
cardiac reentries
8
ischemia
6
induction cardiac
4
ventricular
4

Similar Publications

Introduction: The role of the sympathetic nervous system in the initiation and continuation of ventricular tachyarrhythmias (VTA) is well established. However, whether CSD reduces implantable cardioverter-defibrillator (ICD) shocks and recurrent VTA is still uncertain.

Methods: A comprehensive literature search was performed at Medline and Embase until March 2023.

View Article and Find Full Text PDF

Introduction: Decreased left atrial appendage emptying velocity (LAAV) is a marker for thrombus formation. This study evaluates the association between LAAV and inflammatory indices in non-valvular atrial fibrillation (AF) patients.

Methods: The study population was 1428 patients with AF, 875 of whom enrolled.

View Article and Find Full Text PDF

Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.

View Article and Find Full Text PDF

Aims: Early identification and management of worsening heart failure (HF) is necessary to prevent disease progression and hospitalizations. The ALLEVIATE-HF (Algorithm Using LINQ Sensors for Evaluation and Treatment of Heart Failure) trial is a prospective, randomized, controlled, double-blind, multicentre trial that aims to assess the safety and efficacy of using the Reveal LINQ™ insertable cardiac monitor (ICM) in patients with HF to continuously monitor and evaluate HF risk status and guide timely interventions.

Methods: The ICM algorithm uses parameters derived from electrocardiogram (atrial fibrillation [AF], ventricular rate during AF, heart rate variability, and night heart rate), three-axis accelerometer (patient activity duration), and subcutaneous bioimpedance (fluid volume, respiration rate).

View Article and Find Full Text PDF

Introduction And Objectives: Pulmonary vein (PV) isolation is one of the cornerstones of rhythm-control therapy for symptomatic atrial fibrillation (AF) patients. Pulsed field ablation (PFA) is a novel ablation modality that involves the application of electrical pulses causing cellular death, and it has preferential tissue specificity. In this study, we aimed to share a one-year single center experience of AF ablation with PFA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!