Chromatin structure and factor site occupancies in an in vivo-assembled transcription elongation complex.

Nucleic Acids Res

Molecular Biology Research Program, Henry Ford Hospital, Detroit, MI 48202, USA.

Published: October 1996

The chromatin structure specific to the SV40 late transcription elongation complex as well as the occupancy of several sites that bind transcription factors have been examined. These features have been determined by assessing blockage to restriction enzyme digestion. Cleavage specific to the elongation complex has been quantified using ternary complex analysis. This method involves radioactively labeling the complex by in vitro transcription followed by determining the extent of linearization by electrophoresis in an agarose gel. It was found that not only is the origin region devoid of nucleosomes, but there is also no stable factor occupancy at the BglI, SphI, KpnI and MspI restriction enzyme sites within this region. Thus these sites were cleaved to a high degree, meaning that the binding sites for a number of transcription factors, including OBP/TEF-1, TBP, DAP, as well as a proposed positioned nucleosome, are unoccupied in the native viral transcription elongation complex. The absence of these trans-acting factors from their respective binding sites in the elongation complex indicates that they bind only transiently, possibly cycling on and off during the transcription cycle. This finding implies that various forms of transcription complex are assembled and disassembled during transcription and thus supports a 'hit-and-run' model of factor function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146202PMC
http://dx.doi.org/10.1093/nar/24.20.3887DOI Listing

Publication Analysis

Top Keywords

elongation complex
20
transcription elongation
12
transcription
9
chromatin structure
8
complex
8
transcription factors
8
restriction enzyme
8
binding sites
8
elongation
5
sites
5

Similar Publications

The polyvinyl alcohol/chitosan (PVA/CS) thin film membrane was modified using a deep eutectic solvent (DES) to enhance its adsorption capability and mechanical strength for the removal of brilliant green (BG) dye. Batch adsorption experiments, machine learning (ML) modeling, and density functional theory (DFT) analyses were performed to evaluate the adsorption of BG using PVA/CS and DES-modified PVA/CS (DES/PVA/CS) membranes. Incorporating DES (5 wt%) into the PVA/CS membrane increased its elongation at break from 8.

View Article and Find Full Text PDF

Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development.

Nat Commun

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

Precursor messenger RNA (pre-mRNA) is processed into its functional form during RNA polymerase II (Pol II) transcription. Although functional coupling between transcription and pre-mRNA processing is established, the underlying mechanisms are not fully understood. We show that the key transcription termination factor, RNA exonuclease Xrn2 engages with Pol II forming a stable complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!