Whole rat conceptuses (10.5 gestational days) were explanted into a culture medium containing all-trans-retinol (t-retinol, vitamin A1), ethanol, or combinations of the two alcohols at various concentrations, and were cultured at 37 degrees C for 24 hr. Parameters emphasized in morphological analyses were branchial arch development, closure of neural tube, axial rotation, and development of otic vesicles and of optic cup. Additions of t-retinol alone to the culture medium resulted in significant decreases in viability at concentrations of 7.0 microM and above. A primary target site affected by t-retinol was the second branchial arch. With initial culture medium concentrations of 3.5 microM, 28% of embryos exhibited an underdeveloped second branchial arch, and the effect was concentration dependent. Incubations with t-retinol alone also caused failure of closure of neural tubes, underdevelopment/absence of otic and optic vesicles, and failure of normal axial rotation, but these effects were statistically significant only at the higher concentrations (10.5-14.0 microM). Incubations of conceptuses with ethanol alone resulted in statistically significant decreases in viability and increases of incidence of embryonic abnormalities at 50 mM but not at 10- or 20-mM concentrations. The embryotoxicity of ethanol appeared less site-specific than that of t-retinol. However, ethanol-elicited developmental abnormalities included underdevelopment of the first and second branchial arches, abnormally open neural tubes, abnormally small or absent otic and optic vesicles, and incomplete axial rotation in common with effects elicited by t-retinol. In general, embryos incubated with combinations of t-retinol and ethanol showed lower survival rates and higher incidences of developmental abnormalities when compared to the calculated values expected for simple additive effects; i.e., interactive effects were most frequently greater than additive and probably synergistic but not antagonistic. To assist in the elucidation of possible mechanism(s) for the greater than additive/synergistic dysmorphogenic effects observed, concentrations of all-trans-retinoic acid (t-RA) and all-trans-retinal(t-retinal) in cultured conceptal tissues were determined by high-performance liquid chromatography (HPLC). HPLC analysis showed increases in conceptal tissue levels of both t-RA and t-retinal after conceptuses were exposed to t-retinol (10.5 microM) plus various quantities of ethanol for 24 hr. These observations, in combination with those of previous studies, suggested that the observed greater-than-additive/synergistic dysmorphogenic effects were not due to the inhibition by ethanol of conceptal biosynthesis of t-RA. Whether the increased levels of t-RA and t-retinal caused the observed greater than additive/synergistic dysmorphogenic effects remains to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1096-9926(199607)54:1<12::AID-TERA2>3.0.CO;2-5 | DOI Listing |
Zhonghua Kou Qiang Yi Xue Za Zhi
January 2018
Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China.
To analysis teratogenic effect of GDC-0449 to fetus and set up the animal model of GDC-0449 induced oromandibular limb hypogenesis in mouse for further research of its pathogenesis. Twenty-seven pregnant Institute of Cancer Research (ICR) mice were randomly divided into: control group, embryonic day 8.5 (E8.
View Article and Find Full Text PDFPLoS One
February 2016
GRET-CERETOX, INSA-UB and Toxicology Unit, Pharmacology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
Background: Fascioliasis and paragonimiasis are widespread foodborne trematode diseases, affecting millions of people in more than 75 countries. The treatment of choice for these parasitic diseases is based on triclabendazole, a benzimidazole derivative which has been suggested as a promising drug to treat pregnant women and children. However, at the moment, this drug is not approved for human use in most countries.
View Article and Find Full Text PDFAlcohol Clin Exp Res
July 2014
Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.
Background: The first trimester of human development and the equivalent developmental period in animal models is a time when teratogenic ethanol (EtOH) exposure induces the major structural birth defects that fall within fetal alcohol spectrum disorder (FASD). Previous FASD research employing an acute high dose maternal intraperitoneal EtOH treatment paradigm has identified sensitive periods for a number of these defects. Extending this work, this investigation utilized high resolution magnetic resonance microscopy (MRM)-based analyses to examine the dysmorphology resulting from maternal dietary EtOH intake occurring during selected first trimester-equivalent time periods.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
August 2013
Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
Background: The present study was performed to evaluate the effect of methionine (Met) pretreatment on valproate (VPA) axial defects, induced in CD1 mice by a single intraperitoneal (i.p.) injection of 400 mg/kg VPA on E8 dams.
View Article and Find Full Text PDFReprod Toxicol
April 2013
Accelera S.r.l., Viale Pasteur 10, 20014 Nerviano, Milan, Italy.
Filarial diseases affect millions of people in poverty-stricken areas. In 2011, an investigation of the potential of flubendazole as a safe, highly efficacious, and field-usable macrofilaricidal drug was begun by Drug for Neglected Diseases initiative. As part of the preclinical development program, whole embryo culture was used to investigate the potential embryotoxicity of flubendazole and its metabolites, reduced and hydrolyzed flubendazole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!