Purpose: To identify the normal performance of left ventricular (LV) regional contraction using cine MR imaging with presaturation myocardial tagging.

Material And Methods: Sixteen normal volunteers were examined on a 1.5 T MR system with tagging cine sequences. Tags were applied at end-diastole as 2 parallel black lines on short-axis and 4-chamber sections, and the fractional shortenings were calculated at 7 LV locations.

Results: The following results were obtained with significance: a transmural gradient of contractility in the short-axis section; prolonged late-systolic endocardial shortening and epicardial early termination in the free wall; initial delay of shortening in the anterior wall; apical predominance of contractility; predominance of circumferential shortening in the free wall and of meridional shortening in the septum. These findings could be associated with myocardial fiber architecture, presumed wall stress and temporal asynergy of excitation.

Conclusion: Cine MR imaging with myocardial tagging proved to be useful in assessing the nonuniformity of LV contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02841851960373P268DOI Listing

Publication Analysis

Top Keywords

cine imaging
12
left ventricular
8
imaging presaturation
8
presaturation myocardial
8
myocardial tagging
8
free wall
8
normal nonuniformity
4
nonuniformity left
4
ventricular contraction
4
contraction assessment
4

Similar Publications

Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.

Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).

View Article and Find Full Text PDF

Purpose: To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.

Methods: A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation.

View Article and Find Full Text PDF

Computational modeling of cardiac hemodynamics including chordae tendineae, papillaries, and valves dynamics.

Comput Biol Med

January 2025

LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:

In the context of dynamic image-based computational fluid dynamics (DIB-CFD) modeling of cardiac system, the role of sub-valvular apparatus (chordae tendineae and papillary muscles) and the effects of different mitral valve (MV) opening/closure dynamics, have not been systemically determined. To provide a partial filling of this gap, in this study we performed DIB-CFD numerical experiments in the left ventricle, left atrium and aortic root, with the aim of highlighting the influence on the numerical results of two specific modeling scenarios: (i) the presence of the sub-valvular apparatus, consisting of chordae tendineae and papillary muscles; (ii) different MV dynamics models accounting for different use of leaflet reconstruction from imaging. This is performed for one healthy subject and one patient with mitral valve regurgitation.

View Article and Find Full Text PDF

Atrial fibrillation (AF), impacting nearly 50 million individuals globally, is a major contributor to ischaemic strokes, predominantly originating from the left atrial appendage (LAA). Current clinical scores like CHA₂DS₂-VASc, while useful, provide limited insight into the pro-thrombotic mechanisms of Virchow's triad-blood stasis, endothelial damage, and hypercoagulability. This study leverages biophysical computational modelling to deepen our understanding of thrombogenesis in AF patients.

View Article and Find Full Text PDF

Numerous efforts have been invested in previous algorithms to expose and enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG) procedures, such as noise reduction, segmentation, and background subtraction. Yet, the visibility of the BVs and their luminal content, particularly the small ones, is still limited. We propose a novel visibility enhancement algorithm, whose main body is inspired by a line completion mechanism of the visual system, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!