Osmotically stimulated vasopressin and oxytocin release were measured in pinealectomized and sham operated male rats infused with hypertonic sodium chloride. Neuronal activation in the hypothalamic regions associated with oxytocin and vasopressin release was investigated by quantitative assessment of Fos protein production. The osmotically stimulated release of both vasopressin and oxytocin was significantly lower in pinealectomized animals as compared to sham operated controls. The slope of regression lines between plasma osmolality and hormone concentrations in the sham animals showed a 1.0 +/- 0.1 pmol per mosm/kg rise in vasopressin and 2.0 +/- 0.4 pmol per mosm/kg rise in oxytocin whilst in the pinealectomized animals these values were significantly lower at 0.4 +/- 0.1 pmol vasopressin per mosm/kg and 0.8 +/- 0.2pmol oxytocin per mosm/kg. The osmotic thresholds for hormone release were unaffected by pinealectomy. Fos production was also significantly lower in the supraoptic nucleus and organ vasculosum of the lamina terminalis in the pinealectomized rat at 62 +/- 20 and 59 +/- 9 Fos immunoreactive cells/section as compared to corresponding values of 202 +/- 31 and 123 +/- 20 Fos immunoreactive cells/section in the shams. These observations suggest that reduced hormone release in the pinealectomized animal is due to lowered responsiveness of central osmoregulatory mechanisms and that melatonin may therefore influence the activation of the magnocellular system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2826.1996.04953.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!