Retroviruses display a strong selective pressure to maintain the dimeric nature of their genomic RNAs, suggesting that dimerization is essential for viral replication. Recently, we identified the cis-element required for initiation of human immunodeficiency virus type I (HIV-I) RNA dimerization in vitro. The dimerization initiation site (DIS) is a hairpin structure containing a self-complementary sequence in the loop. We proposed that dimerization is initiated by a loop-loop kissing interaction involving the self-complementary sequence present in each monomer. We tested the ability of sense and antisense oligonucleotides targeted against the DIS to interfere with a preformed viral RNA dimer. Self-dimerization and inhibition properties of the tested oligonucleotides are dictated by the nature of the loop. An RNA loop is absolutely required in the case of sense oligonucleotides, whereas the nature and the sequence of the stem is not important. They form reversible loop-loop interactions and act as competitive inhibitors. Antisense oligonucleotides are less efficient in self-dimerization and are more potent inhibitors than sense oligonucleotides. They are less sensitive to the nature of the loop than the antisense oligonucleotides. Antisense hairpins with either RNA or DNA stems are able to form highly stable and irreversible complexes with viral RNA, resulting from complete extension of base pairing initiated by loop-loop interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.271.46.28812 | DOI Listing |
RSC Adv
January 2025
School of Physical Sciences, Great Bay University Dongguan 523000 China
DNA-based nanomaterials have attracted increasing attention over the past decades due to their incomparable programmability and functionality. In particular, dendritic DNA nanostructures are ideal for constructing drug carriers due to their highly branched structure. In this study, an intelligent drug delivery system was constructed based on DNA dendrimers, in which the DNA duplexes were utilized for simultaneously loading both hydrophilic and hydrophobic small molecule drugs.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct., Carlsbad, CA 92010. Electronic address:
Complexes formed between aluminum cluster molecules that adopt a Ɛ-Al-Keggin structure and antisense oligonucleotides were observed as new impurity peaks during drug product stability testing. The Ɛ-Al-Keggin molecules were determined to be artifacts of the analysis, originating from contact between antisense oligonucleotide drug product solution and aluminum weigh boats used to prepare the analytical sample solutions The presence of the Ɛ-Al-Keggin molecules was confirmed through synthesis of the Keggin molecule through an established route and subsequent spiking studies. Binding affinity studies revealed that the Ɛ-Al-Keggin bound to oligonucleotide sequences of various lengths (10 to 20 bases) and base compositions, though there is some evidence for preferential binding to 5-methylcytosine-containing sequences.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Science Education and Research Thiruvananthapuram, Chemistry, Trivandrum, Trivandrum, Trivandrum, 695551, Trivandrum, INDIA.
Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong.
Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).
Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.
Neurol Genet
February 2025
University of Utah, Salt Lake City.
Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!