On the orthogonal anisotropy of human skin as a function of anatomical region.

Connect Tissue Res

Ludwig Boltzmann Institut für experimentelle plastische Chirurgie, Vienna, Austria.

Published: May 1997

Skin samples were obtained from 8 anatomical sites of 6 human deceased at ages ranging from 30 to 80 years 24 hours post mortem. As shown by biochemical analysis the collagen content varied between 71% and 78% depending on the anatomical location of the skin samples. The content of collagen type III was in the range of 19.2% to 22.2% of the total collagen concentration. As to the biomechanical analysis the axes of minimum and maximum shrinkage after excision were determined and correlated with Langer cleavage line drawn on the specimen with a marker after incision. Two-dimensional biomechanical tests were conducted with a multiaxial tensile testing device consisting of 12 loading axes. The in vivo configuration was a circle with 30 mm diameter. The in vivo stresses were determined by restoring the original shape of the specimen. According to the nonlinear stress-strain relationship incremental strains were applied to the sample with the in vivo configuration and states of uniform extension as reference. The corresponding stresses were recorded after stress relaxation was completed and the equilibrium stresses were regarded as the elastic contribution to the viscoelastic biomechanical behavior. The elastic parameters as a function of the initial strain level were calculated using a set of different incremental strains and stresses. The highest in vivo stresses were found in patella, and upper and lower back. The maximum deviation of the direction of maximum in vivo stress from the Langer cleavage line was found in upper back, the volar part of thigh, and sternum. In vivo orthogonal anisotropy was most pronounced in patella and hollow of the knee.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03008209609021498DOI Listing

Publication Analysis

Top Keywords

orthogonal anisotropy
8
skin samples
8
langer cleavage
8
vivo configuration
8
vivo stresses
8
incremental strains
8
vivo
6
stresses
5
anisotropy human
4
human skin
4

Similar Publications

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

For sheet metals, anisotropy is a significant property affecting sheet metal forming processes. The anisotropy of sheet metals is caused by the rolling process, and several anisotropic constitutive models have been proposed under the non-associated flow rule to describe the deformation and stress anisotropies of sheet metals independently. However, most of them are based on yield functions that are only identified by the experimental data of orthogonal axes, or yield functions that are applicable to only the plane stress state.

View Article and Find Full Text PDF

Chiral organic-inorganic hybrid perovskites offer a promising platform for developing non-linear chiro-optical applications and chiral-induced spin selectivity. Here, we show that achiral hybrid perovskites that have highly ordered ferroelectric domains with orthogonal polarization exhibit planar chirality, as manifested by second harmonic generation with strong circular dichroism. Interestingly, the handedness of the second harmonic generation circular dichroism response can be alternatingly switched between orthogonally polarized domains and domain walls.

View Article and Find Full Text PDF

Linear and nonlinear ultrasound parameters attributed to anisotropy in granite.

Sci Rep

November 2024

School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

The anisotropic nature of granite, a key factor affecting its mechanical properties, is inherently governed by its mineral alignment and the presence of orthogonal cleavage planes: rift, grain, and hardway. This study examines how these cleavage planes influence anisotropy, particularly in the context of microcracking formation and acoustic properties. A new measurement procedure for the acoustic nonlinearity parameter ([Formula: see text]) is developed to address the well-known limitations of conventional linear ultrasound methods, including wave velocity and attenuation coefficient, in detecting microstructural changes induced by existing cleavage planes.

View Article and Find Full Text PDF

Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!