5-HT2 receptors are partially involved in the relationship between renin release and delta relative power.

J Endocrinol Invest

Laboratoire de Physiologie et de Psychologie Environnementales, Strasbourg, France.

Published: September 1996

A strong relationship was previously described between the nocturnal oscillations of plasma renin activity (PRA) and the sleep cycles, with levels of PRA that increase during non rapid eye movement sleep and decrease during rapid eye movement sleep. This study was designed to determine whether ritanserin, a 5-hydroxytryptamine-2 (5-HT2) receptor antagonist known to increase slow wave sleep both in human and in animals and to decrease plasma renin activity response to serotonergic stimulation in the rat, would uncouple this relationship. Eight subjects underwent two randomized night studies after having received either placebo or 5 mg ritanserin administered in the morning. They were subjected to 8 hour polysomnography, including spectral analysis of the electroencephalogram and to continuous blood sampling. Blood was sampled from 2300 to 700h every 10 min and plasma renin activity (PRA) was measured by radioimmunoassay of angiotensin 1. The nocturnal profiles were analysed using the pulse detection program ULTRA. Ritanserin produced the expected increase in slow wave sleep (SWS) duration (132 +/- 10 min under ritanserin vs 72 +/- 9 min under placebo; p < 0.001) and a significant increase in delta relative power (69 +/- 2% under ritanserin vs 60 +/- 2% under placebo; p < 0.01). The mean overnight PRA levels had a tendency to decrease under ritanserin (1.66 +/- 0.34 ngAngl/ml per h under ritanserin vs 1.48 +/- 0.31 ngAngl/ml per h under placebo; p = 0.08). Individual PRA oscillations were preserved and remained strongly associated with delta power oscillations. PRA peak levels were similar in both experimental conditions, but the absolute amplitude of the oscillations was decreased under ritanserin (1.50 +/- 0.36 ngAngl/ml per h vs 1.04 +/- 0.14 ngAngl/ml per h; p < 0.05). These results demonstrate that ritanserin, at a dose that augments delta power, only weakly affects renin release, which suggests that 5-HT2 receptors are only partially involved in the processes coupling renin release and SWS and that other mechanisms probably control the sleep-associated variations in PRA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03349016DOI Listing

Publication Analysis

Top Keywords

renin release
12
plasma renin
12
renin activity
12
ritanserin
9
5-ht2 receptors
8
receptors partially
8
partially involved
8
delta relative
8
relative power
8
activity pra
8

Similar Publications

(Pro)renin receptor (PRR) contains overlapping cleavage site for site-1 protease (S1P) and furin for generation of soluble PRR (sPRR). Although S1P-mediated cleavage mediates the release of sPRR, the functional implication of furin-mediated cleavage is unclear. Here we tested whether furin-mediated cleavage was required for the activity of sPRR in activating ENaC in cultured M-1 cells.

View Article and Find Full Text PDF

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Characterizing SV40-hTERT Immortalized Human Lung Microvascular Endothelial Cells as Model System for Mechanical Stretch-Induced Lung Injury.

Int J Mol Sci

January 2025

Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.

Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.

View Article and Find Full Text PDF

Resistant hypertension is defined as office blood pressure >140/90 mm Hg with a mean 24-hour ambulatory blood pressure of >130/80 mm Hg in patients who are compliant with 3 or more antihypertensive medications. Those who persistently fail pharmaceutical therapy may benefit from interventional treatment, such as renal denervation. Sympathetic nervous activity in the kidney is a known contributor to increased blood pressure because it results in efferent and afferent arteriole vasoconstriction, reduced renal blood flow, increased sodium and water reabsorption, and the release of renin.

View Article and Find Full Text PDF

Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model.

Antioxidants (Basel)

December 2024

Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Sodium thiosulfate (STS), a precursor of hydrogen sulfide (HS), has demonstrated antihypertensive properties. Previous studies have suggested that HS-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!