Striatal neuropeptide Y neurones are not a target for thalamic afferent fibres.

Neuroreport

Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, Marseilles, France.

Published: July 1996

This study examined at the ultrastructural level the putative relationships between afferent fibres coming from the parafascicular nucleus of the thalamus and neuropeptide Y (NPY)-containing neurones in the rat striatum. Experiments used a combination of anterograde transport of the biotin dextran amine to label the thalamo-striatal pathway and immunogold labelling to reveal the NPY-containing neurones at the electron microscopic level. Examination of sections from three animals failed to demonstrate thalamic terminals in synaptic contact with NPY-immunoreactive dendrites or cell bodies, although both types of labelled elements were frequently involved in synaptic complex with unlabelled profiles. These results strongly suggest that striatal NPY interneurones are not under the direct influence of the main component of the thalamo-striatal system.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-199607080-00028DOI Listing

Publication Analysis

Top Keywords

afferent fibres
8
npy-containing neurones
8
striatal neuropeptide
4
neuropeptide neurones
4
neurones target
4
target thalamic
4
thalamic afferent
4
fibres study
4
study examined
4
examined ultrastructural
4

Similar Publications

C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.

View Article and Find Full Text PDF

Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.

Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.

View Article and Find Full Text PDF

Among the various factors implicated in the pathogenesis of gastroesophageal reflux disease (GERD), visceral hypersensitivity and mucosal resistance have been recently re-evaluated in relation to the increasing phenomenon of proton pump inhibitor failure, particularly in patients with nonerosive reflux disease (NERD). Intensive research has allowed us to understand that noxious substances contained in the refluxate are able to interact with esophageal epithelium and to induce the elicitation of symptoms. The frequent evidence of microscopic esophagitis able to increase the permeability of the mucosa, the proximity of sensory afferent nerve fibers to the esophageal lumen favoring the higher sensitivity to noxious substances and the possible activation of inflammatory pathways interacting with sensory nerve endings are pathophysiological alterations confirming that mucosal resistance is impaired in GERD patients.

View Article and Find Full Text PDF
Article Synopsis
  • This study developed a method for intracellular calcium imaging in adult rat spinal cord slices to understand neuronal activity better.
  • The research found that the type of stimulation used (A-fiber vs. C-fiber) affected the calcium responses, with different intensity levels leading to distinct response patterns.
  • Results showed that certain drugs, like morphine, significantly suppressed calcium responses, while others, like bicuculline and high doses of tranexamic acid, enhanced them, allowing for insights into pain transmission and modulation in the spinal cord.
View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!