Conversion of D-hamamelose into 2-carboxy-D-arabinitol and 2-carboxy-D-arabinitol 1-phosphate in leaves of Phaseolus vulgaris L.

J Biol Chem

Department of Biochemistry and Physiology, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.

Published: October 1996

[1-14C]Hamamelose (2-hydroxymethyl-D-ribose) was synthesized by reaction of ribulose 5-phosphate with potassium [14C]cyanide, catalytic hydrogenation of the resulting cyanohydrin, and dephosphorylation of the product. Its identity was established by a chromatographic comparison with hamamelose isolated from the bark of witch hazel (Hamamelis virginiana L.). Following vacuum infiltration of the [1-14C]hamamelose into leaf discs from Phaseolus vulgaris L., 14C-labeled 2carboxy-D-arabinitol (CA) and 2-carboxy-D-arabinitol 1-phosphate (CA1P) were formed, in the dark. Conversion of hamamelose to both CA and CA1P in the leaf discs was inhibited by dithiothreitol and sodium fluoride, although at high concentrations of these inhibitors conversion into CA was still evident when conversion into CA1P was totally inhibited. Wheat (Triticum aestivum L.) leaves converted hamamelose into CA without formation of CA1P. Leaves from P. vulgaris contained 68 nmol.g-1 fresh weight of hamamelose in the light and 35 nmol.g-1 fresh weight in the dark. A pathway for the biosynthesis of CA1P from Calvin cycle intermediates is proposed which includes the sequence: hamamelose --> CA --> CA1P.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.271.43.26803DOI Listing

Publication Analysis

Top Keywords

2-carboxy-d-arabinitol 1-phosphate
8
phaseolus vulgaris
8
leaf discs
8
nmolg-1 fresh
8
fresh weight
8
ca1p
6
hamamelose
5
conversion
4
conversion d-hamamelose
4
d-hamamelose 2-carboxy-d-arabinitol
4

Similar Publications

Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis.

View Article and Find Full Text PDF

Regulating the central CO2-fixing enzyme Rubisco is as complex as its ancient reaction mechanism and involves interaction with a series of cofactors and auxiliary proteins that activate catalytic sites and maintain activity. A key component among the regulatory mechanisms is the binding of sugar phosphate derivatives that inhibit activity. Removal of inhibitors via the action of Rubisco activase is required to restore catalytic competency.

View Article and Find Full Text PDF

Searching for AChE inhibitors from natural compounds by using machine learning and atomistic simulations.

J Mol Graph Model

September 2022

Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:

Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease treatment. In this work, a combined approach involving machine-learning (ML) model and atomistic simulations was established to predict the ligand-binding affinity to AChE of the natural compounds from VIETHERB database. The trained ML model was first utilized to rapidly and accurately screen the natural compound database for potential AChE inhibitors.

View Article and Find Full Text PDF

Rubisco catalyzes the fixation of CO into organic compounds that are used for plant growth and the production of agricultural products, and specific sugar-phosphate derivatives bind tightly to the active sites of Rubisco, locking the enzyme in a catalytically inactive conformation. 2-carboxy-d-arabinitol-1-phosphate phosphatase (CA1Pase) dephosphorylates such tight-binding inhibitors, contributing to the maintenance of Rubisco activity. Here, we investigated the hypothesis that overexpressing would decrease the abundance of Rubisco inhibitors, thereby increasing the activity of Rubisco and enhancing photosynthetic performance and productivity in wheat ().

View Article and Find Full Text PDF

The genes for CA1Pase (2-carboxy-D-arabinitol-1-bisphosphate phosphatase) from French bean, wheat, Arabidopsis and tobacco were identified and cloned. The deduced protein sequence included an N-terminal motif identical with the PGM (phosphoglycerate mutase) active site sequence [LIVM]-x-R-H-G-[EQ]-x-x-[WN]. The corresponding gene from wheat coded for an enzyme with the properties published for CA1Pase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!