Certain biophysical properties of Ukrain.

Drugs Exp Clin Res

Department of General Surgery, Ukrainian State Medical University, Kiev Institute of Physics, Ukraine.

Published: February 1997

Ukrain was found to be relatively resistant in vitro to mean intensity radiation over the whole UV range. Of the seven peaks in the absorption spectrum of Ukraine those at 210 and 230 nm are conspicuous in the spectrum of the plasma of colorectal patients injected the previous day with this drug.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biophysical properties
4
properties ukrain
4
ukrain ukrain
4
ukrain resistant
4
resistant vitro
4
vitro intensity
4
intensity radiation
4
radiation range
4
range peaks
4
peaks absorption
4

Similar Publications

Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

Future Med Chem

January 2025

Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.

View Article and Find Full Text PDF

Host cell responses to biofilm-derived extracellular vesicles.

Front Cell Infect Microbiol

January 2025

Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.

is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.

View Article and Find Full Text PDF

Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time.

Biophys J

January 2025

Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA. Electronic address:

Synaptic morphology plays a critical role in modulating the dynamics of neurotransmitter diffusion and receptor activation in interneuron communication. Central physical aspects of synaptic geometry, such as the curvature of the synaptic cleft, the distance between the presynaptic and postsynaptic membranes, and the surface area-to-volume ratio of the cleft, crucially influence glutamate diffusion and N-Methyl-D-Aspartate receptor (NMDAR) opening probabilities. In this study, we developed a stochastic model for receptor activation using realistic synaptic geometries.

View Article and Find Full Text PDF

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!