Glutathione has a variety of important physiological functions in cellular metabolism and defense, including protection from radicals, oxidative stress, and electrophilic compounds. On the basis of this interaction with both endogenous and synthetic substances, glutathione and the key enzyme for its conjugation, glutathione S-transferase, appear to be critical determinants in tumor cell resistance to several antineoplastic drugs, e.g. platinum analogs. In ten established head and neck cancer cell lines (UM-SCC 10A, 10B, 11B, 14A, 14B, 14C, and 22B, HLac79, 8029NA, and 8029DDP4) chemosensitivity to cisplatin, carboplatin, 5-fluorouracil, and bleomycin, as well as cellular glutathione content and activity of glutathione S-transferase were determined. The results revealed no correlation between the sensitivity of tumor cells to any of the drugs tested and the level of glutathione or the activity of glutathione S-transferase. However, the cisplatin-resistant subpopulation 8029DDP4 showed the highest glutathione level and marked cross-resistance to bleomycin. Glutathione depletion with buthionine sulfoximine led to moderately increased sensitivity towards cisplatin and carboplatin in all cell lines, but did not affect their response to 5-fluorouracil or bleomycin. These results suggest that the level of glutathione or the activity of glutathione S-transferase is not a suitable parameter for the assessment of chemosensitivity in head and neck squamous-cell carcinoma lines. However, response to platinum analogs is influenced by alterations of the initial intracellular glutathione concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01209027DOI Listing

Publication Analysis

Top Keywords

glutathione s-transferase
16
glutathione
14
head neck
12
cell lines
12
activity glutathione
12
chemosensitivity head
8
glutathione level
8
glutathione depletion
8
platinum analogs
8
cisplatin carboplatin
8

Similar Publications

CmTGA8-CmAPX1/CmGSTU25 regulatory model involved in trehalose induced cold tolerance in oriental melon seedlings.

Plant Physiol Biochem

December 2024

College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China. Electronic address:

Plants have developed complex regulatory networks to adapt to various stresses, including cold stress. Trehalose (Tre), known as the "sugar of life," plays a crucial role in enhancing cold tolerance by triggering antioxidation. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Behavioral, biochemical, and molecular characterization of MPTP/p-intoxicated mice.

Exp Neurol

January 2025

Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; The Marine Biomedical Research Institute of Guangdong, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524000, China. Electronic address:

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model remains the most extensively utilized animal model for Parkinson's disease (PD). Treatment regimens are classified into three categories: acute, subacute, and chronic. Among these, the MPTP with probenecid (MPTP/p)-induced chronic mouse model is favored for its capacity to sustain long-term striatal dopamine depletion, though the resultant behavioral, biochemical, and molecular alterations require further validation.

View Article and Find Full Text PDF

Chalcogen dihydrobenzofuran compounds as potential neuroprotective agents: an in vitro and in silico biological investigation.

Biochimie

January 2025

Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), 96010-900 RS, Brazil. Electronic address:

Oxidative stress arises from an imbalance between reactive species (RS) production and the antioxidant defense, increasing the brain susceptibility to neurodegenerative and psychiatric diseases. Besides, changes in the expression or activity of neurotransmitter metabolism enzymes, such as monoamine oxidases (MAO), are also associated with mental disorders, including depression. Considering this, antioxidant and MAO-A activity inhibitory potential of six 2,3-chalcogenodihydrobenzofurans (2,3-DHBF) was investigated through in vitro and in silico tests.

View Article and Find Full Text PDF

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

Investigation of Genetic Polymorphisms Related GSTM1, GSTT1, GSTP1 Genes and their Association with Radiotherapy Toxicity among Head and Neck Cancer Patients.

Asian Pac J Cancer Prev

January 2025

Department of Molecular Biology & Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.

Background: In this study we explored the association of polymorphisms of glutathione s transferase gene including GSTM1, GSTT1 and GSTP1 with adverse acute normal tissue reactions resulted from radiotherapy in HNC patients. We assessed the association of GSTM1 and GSTT1 null genotypes and Ile105Val of exon-5 and Ala114Val of exon-6 of GSTP1 gene polymorphisms with the risk of acute skin toxicity reactions after therapeutic radiotherapy in HNC patients.

Methods: Four hundred HNC patients administered with Intensity modulated radiation therapy were enrolled in this study for the evaluation of radiotherapy associated toxicity reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!