Msx1 controls inductive signaling in mammalian tooth morphogenesis.

Development

Howard Hughes Medical Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Published: October 1996

Members of the Msx homeobox family are thought to play important roles in inductive tissue interactions during vertebrate organogenesis, but their precise developmental function has been unclear. Mice deficient for Msx1 exhibit defects in craniofacial development and a failure of tooth morphogenesis, with an arrest in molar tooth development at the E13.5 bud stage. Because of its potential for experimental manipulation, the murine molar tooth germ provides a powerful system for studying the role of Msx genes in inductive signaling during organogenesis. To further analyze the role of Msx1 in regulating epithelial-mesenchymal interactions during tooth morphogenesis, we have examined the expression of several potential Msx1 downstream genes in Msx1 mutant tooth germs and we have performed functional experiments designed to order these genes into a pathway. Our results show that expression of Bone Morphogenetic Protein 4 (BMP4), the HMG box gene Lef1 and the heparan sulfate proteoglycan syndecan-1 is specifically reduced in Msx1 mutant dental mesenchyme, while expression of the extracellular matrix protein tenascin is unaffected. BMP4 soaked beads can induce Bmp4 and Lef1 expression in explanted wild-type dental mesenchymes, but only Lef1 expression in Msx1 mutant dental mesenchyme. We thus conclude that epithelial BMP4 induces its own expression in dental mesenchyme in a manner that requires Msx1. In turn, we show that addition of BMP4 to Msx1 deficient tooth germs bypasses the requirement for Msx1 and rescues epithelial development from the bud stage to the E14.5 cap stage. Lastly, we show that FGFs induce syndecan-1 expression in dental mesenchyme in a manner that also requires Msx-1. These results integrate Msx1 into a regulatory hierarchy in early tooth morphogenesis and demonstrate that Msx1 is not only expressed in dental mesenchyme in response to epithelial signals, but also in turn regulates the reciprocal expression of inductive signals in the mesenchyme which then act back upon the dental epithelium. We propose that Msx genes function repetitively during vertebrate organogenesis to permit inductive signaling to occur back and forth between tissue layers.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.122.10.3035DOI Listing

Publication Analysis

Top Keywords

dental mesenchyme
20
tooth morphogenesis
16
msx1
12
inductive signaling
12
msx1 mutant
12
tooth
8
vertebrate organogenesis
8
molar tooth
8
bud stage
8
msx genes
8

Similar Publications

Novel one-step lignin microsphere preparation for oral tissue regeneration applications.

Front Bioeng Biotechnol

January 2025

Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.

Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol.

View Article and Find Full Text PDF

Background: Oral cancer is a predominant and aggressive form of head and neck cancer with limited treatment options. Stevioside, a naturally occurring biocompatible compound, has gained attention for its potential therapeutic properties, although its molecular mechanistic role in OSCC merely understood. This study aims to elucidate the impact of stevioside on OSCC cells, focusing on its inhibitory effects on cell proliferation and epithelial-mesenchymal transitions (EMT).

View Article and Find Full Text PDF

Human teeth serves as a potential reservoir for postembryonic mesenchymal dental stem cells. Researchers have identified and isolated seven types of dental stem cells from pulp and periodontal ligament tissues. These cells have a wide range of clinical applications across the fields of medicine and dentistry due to their increased proliferative nature.

View Article and Find Full Text PDF

Pleomorphic adenoma (PA), the most prevalent salivary gland tumor, exhibits a diverse histological spectrum characterized by epithelial, myoepithelial, and mesenchymal patterns, and secretory products. However, a subset of PAs presents microscopic features suggestive of malignancy, leading to challenging and potentially significant diagnostic pitfalls. A comprehensive retrospective analysis was conducted on the Salivary Gland Tumor Registry, compiled by the authors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!