The growing interest in detection of genetic effects for complex traits along with molecular revolution has stimulated many linkage studies. Multiple replication studies tend to produce different results. In such situations, rigorous meta-analysis methods can be useful for assessing the overall evidence for linkage. We propose here a random effects model for combining results from independent quantitative sibpair linkage studies. The model can be used to assess the aggregate evidence for linkage by combing the regression coefficients to the Haseman and Elston [(1972) Behav Genet 2:3-19] sibpair method as well as to assess heterogeneity among the multiple studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1098-2272(1996)13:4<377::AID-GEPI6>3.0.CO;2-1 | DOI Listing |
Pancreatology
January 2025
Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary. Electronic address:
Background/objectives: Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap.
View Article and Find Full Text PDFJ Adv Res
January 2025
Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China. Electronic address:
Introduction: High-density Wheat 660 K and 90 K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application.
Objective: With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660 K and 90 K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat.
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFDelays in getting injured patients to hospital in a timely manner can increase avoidable death and disability. Like many low- or middle-income countries (LMICs), Rwanda experiences delays related to lack of efficient prehospital communication and formal guidelines to triage patients for hospital care. This paper describes the protocol to develop, roll out, and evaluate the effectiveness of a Destination Decision Support Algorithm (DDSA) integrated in an electronic communication platform, '912Rwanda'.
View Article and Find Full Text PDFBacterial genomes exhibit significant variation in gene content and sequence identity. Pangenome analyses explore this diversity by classifying genes into core and accessory clusters of orthologous groups (COGs). However, strict sequence identity cutoffs can misclassify divergent alleles as different genes, inflating accessory gene counts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!