AI Article Synopsis

  • The study focuses on improving the early stages of drug development for parasitic diseases by utilizing structural data and computational tools to identify specific inhibitors of key proteases.
  • By modeling enzyme structures based on known protein sequences, researchers identified promising compounds, including potent inhibitors of falcipain and cruzain, that show effectiveness against malaria parasites.
  • These findings enhance the potential for developing effective treatments against both chloroquine-sensitive and resistant strains of malaria while adhering to structured design principles in drug discovery.

Article Abstract

To streamline the preclinical phase of pharmaceutical development, we have explored the utility of structural data on the molecular target and synergy between computational and medicinal chemistry. We have concentrated on parasitic infectious diseases with a particular emphasis on the development of specific noncovalent inhibitors of proteases that play a key role in the parasites' life cycles. Frequently, the structure of the enzyme target of pharmaceutical interest is not available. In this setting we have modeled the structure of the relevant enzyme by virtue of its sequence similarity with proteins of known structure. For example, we have constructed a homology-based model of falcipain, the trophozoite cysteine protease, and used the computational ligand identification algorithm DOCK to identify in compuo enzyme inhibitors including oxalic bis(2-hydroxy-1-naphthyl-methylene)hydrazide (1) [Ring, C. S.; Sun, E.; McKerow, J. H.; Lee, G.; Rosenthal, P. J., Kuntz, I. D.; Cohen, F. E., Proc. Natl Acad. Sci. U.S.A. 1993, 90, 3583]. Compound 1 inhibits falcipain (IC50 6 microM) and the organism in vitro as judged by hypoxanthine uptake (IC50 7 microM). Following this lead, to date, we have identified potent bis arylacylhydrazides (IC50 150 nM) and chalcones (IC50 200 nM) that are active against both chloroquine-sensitive and chloroquine-resistant strains of malaria. In a second example, cruzain, the crystallographically determined structure of a papain-like cysteine protease, resolved to 2.35 A, was available. Aided by DOCK, we have identified a family of bis-arylacylhydrazides that are potent inhibitors of cruzain (IC50 600 microM). These compounds represent useful leads for pharmaceutical development over strict enzyme inhibition criteria in a structure-based design program.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0968-0896(96)00136-8DOI Listing

Publication Analysis

Top Keywords

structure-based design
8
pharmaceutical development
8
cysteine protease
8
ic50 microm
8
ic50
5
design parasitic
4
parasitic protease
4
inhibitors
4
protease inhibitors
4
inhibitors streamline
4

Similar Publications

Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation.

View Article and Find Full Text PDF

Data-driven score tuning for ChooseLD: A structure-based drug design algorithm with empirical scoring and evaluation of ligand-protein docking predictability.

Biophys Physicobiol

September 2024

Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.

Computerized molecular docking methodologies are pivotal in screening, a crucial facet of modern drug design. ChooseLD, a docking simulation software, combines structure- and ligand-based drug design methods with empirical scoring. Despite advancements in computerized molecular docking methodologies, there remains a gap in optimizing the predictive capabilities of docking simulation software.

View Article and Find Full Text PDF

Existing tunable optical metasurfaces based on the electro-optic effect are either complex in structure or have a limited phase modulation range. In this paper, a simple rectangular metasurface structure based on a Pb(MgNb)O-PbTiO (PMN-PT) crystal with high electro-optic coefficient of 120 pm/V was designed to demonstrate its electrically tunable performance in the optical communication band through simulations. By optimizing the structure parameters, a tunable metasurface was generated that can induce a complete 2π phase shift for beam deflection while maintaining relatively uniform transmittance.

View Article and Find Full Text PDF

Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.

View Article and Find Full Text PDF

Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against : Design, Synthesis, and In Vitro and In Silico Insights.

Molecules

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!