Study Design: This study analyzed in vitro experiments of ectopic firing evoked by mechanical compression or hypoxia of canine lumbar dorsal roots with dorsal root ganglia using an in vitro model.

Objectives: The results were correlated to understand the pathophysiology of radiculopathy, which manifests abnormal sensation and pain.

Summary Of Background Data: It has been speculated that blood flow in the nerve root and mechanical compression play major roles in the production of radiculopathy symptoms. However, no precise experimental studies have been conducted on the relationship between these factors and the development of ectopic firing.

Methods: Canine lumbar dorsal roots with dorsal root ganglia were immersed in an oxygenated artificial cerebrospinal fluid, and activity of the nerve root was recorded using bipolar platinum electrodes. Using this model, the effects of quantitative mechanical compression and hypoxia on the ectopic firing were analyzed.

Results: When compression was applied, mechanical thresholds for eliciting firing were much lower in dorsal root ganglia than in dorsal roots, and the firing lasted for a longer period in dorsal root ganglia. Under hypoxia, dorsal root ganglia showed firing, and their thresholds from mechanical stimuli decreased significantly. In dorsal roots, impulse propagation was not affected, whereas firing was seen under the hypoxic condition.

Conclusion: Dorsal root ganglia are highly sensitive to mechanical compression and hypoxia and closely related to abnormal sensations and pain in radiculopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00007632-199609150-00006DOI Listing

Publication Analysis

Top Keywords

dorsal root
28
root ganglia
28
mechanical compression
20
compression hypoxia
16
dorsal roots
16
nerve root
12
ectopic firing
12
dorsal
11
root
10
canine lumbar
8

Similar Publications

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Mechanisms of Cancer-Induced Bone Pain.

J Pain Res

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.

Bone is a common site of advanced cancer metastasis, second only to the lungs and liver. Cancer-induced bone pain (CIBP) is a persistent and intense pain that is caused by a combination of inflammatory and neuropathic factors. As CIBP progresses, the degree of pain intensifies.

View Article and Find Full Text PDF

Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is an interventional procedure that has been used to treat chronic back pain for over 50 years; this unique case report demonstrates the effectiveness of pulsed radiofrequency ablation (PRFA) on the dorsal root ganglion (DRG) in the treatment of chronic radicular pain (Russo et al., 2021, J Pain Res, 14, 3897). The RFA provides pain relief by using thermal energy to disrupt peripheral nerves carrying nociceptive signals back to the central nervous system (Abd-Elsayed et al.

View Article and Find Full Text PDF

Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain.

Mol Med

January 2025

Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.

Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!