Purpose: Solid lipid nanoparticles (SLN) are comprised of a high-melting point triglyceride (TG) core with a phospholipid (PL) coating. This study has investigated the possible formation of multiple PL bilayers on the TG core of SLN's as a function of increasing the PL:TG molar ratio.
Methods: Trilaurin (TL) was used as the SLN core. Dipalmitoylphos-phatdylcholine (DPPC) or a mixture of DPPC and dimyristoylphosphatidylglycerol (DMPG) were used to produce neutral and negatively charged SLN's. The volume of aqueous phase associated with the PL was determined using calcein and 6-carboxyfluorescein (6-CF) as hydrophilic markers incorporated during the preparation of the SLN's.
Results: The diameter of the SLN's decreased as the molar ratio of PL to TL was increased, until a PL:TL ratio of 0.15 was reached. After this point the diameter was not affected by further increases in the molar ratio. The experimental amount of PL required to prepare SLN's was significantly higher than the theoretical amount required to form a single monolayer on the surface. The aqueous volume associated with the PL was increased with increasing PL:TL molar ratios.
Conclusions: The results obtained suggest that the formation of multiple PL bilayers is probable in SLN's prepared with a high molar ratio of PL to TL. The volume of the aqueous phase between the PL-bilayers, estimated from the amount of the hydrosoluble markers trapped in this phase, provides an indication of the relative number of bilayers at different PL:TL ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1016090420759 | DOI Listing |
Int J Biol Macromol
January 2025
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China. Electronic address:
Microporous metal-organic frameworks (MOF) exhibit excellent carbon dioxide (CO) adsorption performance and selectivity for CO/N separation. However, the challenges associate with the recycling and reuse of MOF powders hinder their practical applications. To address these limitations, a flexible and stable MOF-based composite material was designed by immobilizing UiO-66(Zr)-(OH) onto cellulose nanofibers (CNFs) aerogels (MOF-CNFs), which featured high porosity.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
University of Freiburg, Institute of Earth and Environmental Sciences, Applied Geochemistry, Freiburg 79104, Germany.
Antimony is a priority pollutant, whose mobility in redox-dynamic environments may be controlled by interactions with Fe(III) hydroxide minerals that form via Fe(II) oxidation. In this study, we examined the Fe(III) hydroxide precipitates and associated mechanisms of Sb(V) sequestration that result from Fe(II) oxidation in the presence of Sb(V) under neutral pH conditions. To achieve this aim, oxidation experiments were carried out in O-saturated, Fe(II)-bearing solutions (buffered at pH 7) over a range of environmentally relevant Sb(V) concentrations (equivalent to Sb(V):Fe(II) molar ratios of 0, 0.
View Article and Find Full Text PDFLangmuir
January 2025
Federal University of Itajubá, Itajubá-MG 37500-903, Brazil.
CuO/CeO and CuO/CeO-LaO catalysts, synthesized with varying CeO and LaO molar ratios (1:1, 1:2, and 2:1), were prepared via the hydrothermal method and tested in the water-gas shift reaction (150-350 °C). LaO addition altered structural properties, reducing surface area and copper dispersion. XANES and in situ XRD confirmed metallic Cu species during reduction and reaction.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
For paediatric patients suffering from neurofibromatosis, Selumetinib (SEL) is the only approved drug. Here an original ecofriendly and high pace method is introduced using 96- microwell spectrophotometric assay (MW-SPA) to measure SEL content in bulk and commercial pharmaceutical formulation (Koselugo capsules). This assay was relied on in-microwell formation of a coloured charge transfer complex (CTC) upon interaction of SEL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!