Quinone metabolites of naphthalene (NAP) are known to produce lipid peroxidation. However, the ability of naphthalene to induce oxidative stress in experimental animals has not been extensively investigated. Furthermore, the effects of vitamin E succinate [(+)-alpha-tocopherol acid succinate; VES] on naphthalene-induced oxidative stress and tissue damage were assessed. Female Sprague-Dawley rats were treated with a single oral dose of 1100 mg naphthalene/kg (0.50 LD50) in corn oil. Vitamin E succinate-treated rats received 100 mg VES/kg/day orally for 3 d before naphthalene treatment, and 40 mg VES/kg/d after NAP administration. Hepatic and brain tissues and urine samples were collected 0, 12, 24, 48, and 72 h after NAP treatment. Naphthalene treatment resulted in a 2.1-fold increase in lipid peroxidation in liver and brain mitochondria at the 24-h time point. Increases in hepatic and brain mitochondrial lipid peroxidation in VES plus NAP-treated rats were 39-46% less than NAP treated rats at 24 h. DNA-single strand breaks increased 3.0-fold in hepatic tissues in NAP treated rats, and increased only 1.6-fold in VES protected rats at the 24-h time point. Glutathione (GSH) decreased by 83 and 49% in hepatic and brain tissues, respectively, in NAP-treated rats at the 24-h time point, while GSH content in VES plus NAP-treated rats decreased 47 and 21% in hepatic and brain tissues, respectively, at this same time point. Microsomal membrane fluidity, a measurement of membrane damage, increased 1.9- and 1.7-fold in liver and brain tissues, respectively, in NAP-treated rats, and only 1.3- and 1.2-fold in NAP plus VES-treated rats at the 24-h time point. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), and acetone (ACON) was determined at 0-96 h after NAP administration. Between 12-24 h after NAP administration maximal excretion of the four urinary lipid metabolites was observed, with increases of 4.5-, 2.7-, 2.3-, and 2.8-fold for MDA, FA, ACT, and ACON, respectively, at the 24-h time point. VES reduced the NAP-induced excretion of these urinary metabolites by 28-49% 24 h after NAP administration. These results support the hypothesis that NAP induces oxidative stress and tissue damage, and that vitamin E succinate provides significant protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0891-5849(96)00161-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!