Cryptosporidiosis may have severe clinical consequences in both immunocompromised and immunocompetent individuals. However, pathophysiological mechanisms that are responsible for diarrhea are poorly understood. We performed jejunal perfusion studies in patients with human immunodeficiency virus-related cryptosporidial diarrhea to measure water and electrolyte transport in vivo. Five patients with human immunodeficiency virus-related cryptosporidiosis and nine healthy volunteers were studied using a triple-lumen steady-state jejunal perfusion technique. Stool volume measurement and distal duodenal biopsy showed that the patients had diarrhea (600-1500 ml/24 hr) and morphological abnormalities of small intestinal mucosa. Net water, sodium, and chloride movement in the jejunum was not significantly different from healthy controls. In these patients with watery diarrhea and morphological mucosal abnormalities, we found no evidence that cryptosporidial diarrhea was due to a secretory state in the proximal small intestine. We conclude that diarrhea may be due to secretion of electrolytes and water efflux more distally or to other abnormalities of gastrointestinal function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02093615 | DOI Listing |
Sci Rep
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic.
This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Natural Science, Walter Sisulu University, Mthatha, South Africa.
Changing climates threaten crop growth and fodder yields in dryland farming. This study assessed two radish genotypes (LINE 2, ENDURANCE) under three water regimes (W1 = well-watered, W2 = moderate stress, W3 = severe stress) and two leaf harvesting options over two seasons (2021/22 and 2022/23). Key findings revealed that water regime significantly (P < 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia.
Agriculture 4.0 technologies continue to see low adoption among small and medium-sized farmers, primarily because these solutions often fail to account for the specific challenges of rural areas. In this work, we propose and implement a design methodology to develop a Precision Agriculture solution aimed at assisting farmers in managing water stress in Hass avocado crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!