Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers.

Mech Dev

Faculté des Sciences et des Techniques, CNRS URA 1340, Nantes, France.

Published: August 1996

The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo in an aneurogenic environment induced after neural tube ablation, the cardiac ventricular myosin heavy chain (MHC) isoform was not expressed. The adult slow MHC isoform, SM2, appeared by embryonic day 7 (ED 7) in normal innervated slow ALD but was not expressed in denervated muscle. Analysis of in vitro differentiation of myoblasts from fast PLD and slow ALD muscles isolated from ED 7 control and neuralectomized quail embryos showed no fundamental differences in the pattern of MHC isoform expression. Newly differentiated fibers accumulated cardiac ventricular, embryonic fast, slow SM1 and SM3 MHC isoforms. Nevertheless, the expression of slow SM2 isoform in myotubes formed from slow ALD myoblasts only occurred when myoblasts were cultured in the presence of embryonic spinal cord. Our studies demonstrate that the neural tube influences primary as well as secondary myotube differentiation in avian forelimb and facilitates the expression of different MHC, particularly slow SM2 MHC gene expression in slow myoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0925-4773(96)00564-3DOI Listing

Publication Analysis

Top Keywords

slow ald
16
mhc isoform
12
slow
10
myosin heavy
8
heavy chain
8
isoform expression
8
fast slow
8
fast pld
8
neural tube
8
cardiac ventricular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!