The aim of this study was to determine whether, in overarm throws made by recreational ball players, the fingers undergo flexion movement before ball release and thereby contribute to the generation of ball speed. To obtain the high resolution needed to answer this question, the magnetic-field search-coil technique was used and the data were sampled at 1000 Hz. The subjects, who were either seated or were standing, threw tennis balls at different speeds at a target 3 m away. Angular positions in three dimensions were simultaneously recorded of the distal phalanx of the middle finger and hand and, in additional experiments to determine the mechanism of ball release in more detail, three middle finger phalanges and the hand. Different phases of ball release were determined by pressure-sensitive microswitches on the proximal and distal phalanges of the middle finger. Irrespective of whether the subjects were seated or were standing, for all throws at all speeds, finger flexion did not occur before ball release. That is, up until final release of the ball, the fingers only underwent extension associated with hand opening. For fast throws, at the instant of final ball release the fingers began to flex, presumably as a result of reactive forces associated with release of the ball. Thus, in overarm throws made by recreational ball players, finger flexion movement does not appear to contribute to the generation of ball speed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02640419608727719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!