Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heavy whole-body exercise, requiring a 10- to 15-fold increase in minute ventilation, encroaches on the capacities of the respiratory muscle system to respond. Recently, using the technique of bilateral phrenic nerve stimulation, it has been shown that heavy endurance exercise (> 85% of VO2max) lasting > 8-10 min causes diaphragmatic fatigue (15-30% reduction in transdiaphragmatic pressures when electrically stimulated at low frequencies [1-20 Hz] supramaximally). The fatigue appears to be due to an interaction of diaphragmatic work (i.e., pressure production) combined with effects related to exercise intensity (i.e., increased blood flow competition with the locomotor muscles and increased production of metabolic by-products) and requires > 60 min for recovery. Fitness (i.e., as implied from VO2max) appears to allow greater diaphragmatic work for a similar degree of fatigue. Unloading the respiratory muscles (with helium/oxygen gas or using a pressure-assist device) during heavy exercise < 90-95% of VO2max does not appear to alter exercise time, VO2max, or minute ventilation, implying that respiratory muscle fatigue plays little role in altering human performance at these work intensities. However, unloading the respiratory system with helium at work intensities > 90-95% of VO2max has been shown to improve exercise time. This would imply that respiratory muscle fatigue may play a role in limiting human performance at the extremes of human performance or that other factors related to the respiratory system (i.e., alterations in the sensation of dyspnea or mechanical load) may play an important role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005768-199609000-00008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!