Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiolabelled autologous low density lipoprotein (LDL) has previously been used to study in vivo distribution and metabolism of native-LDL. Non-invasive imaging of atherosclerotic lesions using 99mTc-LDL was shown to be feasible in animal models and patients but the clinical utility remains to be assessed. Since recent reports suggest that oxidized LDL may play a major role in the pathogenesis of atherosclerosis, we developed a technique to oxidize autologous LDL and compared the biodistribution of oxidized-LDL with that of native-LDL in man. In addition, we evaluated the uptake in vivo of oxidized- and native-LDL by atherosclerotic plaques. LDL, obtained from human plasma was treated with various combinations of copper ions and H2O2 to induce oxidative modification by increasing the content of lipid peroxidation products and electrophoretic mobility. When LDL (0.3 mg/ml) was incubated with 100 microM Cu2+ and 500 microM H2O2 oxidation occurred rapidly within 1 h, and was labelled with 99mTc efficiently as native LDL. In vivo distribution studies revealed a faster plasma clearance of oxidized-LDL compared to native-LDL, and a higher uptake by the reticuloendothelial system. Tomographic scintigraphy of the neck in patients suffering from transient ischemic attacks, revealed accumulation of radiolabelled LDL preparations in the carotid artery affected by atherosclerotic lesions. We developed a technique to rapidly oxidize LDL using copper and H2O2. Biodistribution data demonstrate that oxidized-LDL is rapidly cleared from circulation, is taken up mostly by organs rich in macrophages, and can be detected at the level of carotid plaques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0021-9150(96)05888-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!