A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. | LitMetric

Radiolabelled autologous low density lipoprotein (LDL) has previously been used to study in vivo distribution and metabolism of native-LDL. Non-invasive imaging of atherosclerotic lesions using 99mTc-LDL was shown to be feasible in animal models and patients but the clinical utility remains to be assessed. Since recent reports suggest that oxidized LDL may play a major role in the pathogenesis of atherosclerosis, we developed a technique to oxidize autologous LDL and compared the biodistribution of oxidized-LDL with that of native-LDL in man. In addition, we evaluated the uptake in vivo of oxidized- and native-LDL by atherosclerotic plaques. LDL, obtained from human plasma was treated with various combinations of copper ions and H2O2 to induce oxidative modification by increasing the content of lipid peroxidation products and electrophoretic mobility. When LDL (0.3 mg/ml) was incubated with 100 microM Cu2+ and 500 microM H2O2 oxidation occurred rapidly within 1 h, and was labelled with 99mTc efficiently as native LDL. In vivo distribution studies revealed a faster plasma clearance of oxidized-LDL compared to native-LDL, and a higher uptake by the reticuloendothelial system. Tomographic scintigraphy of the neck in patients suffering from transient ischemic attacks, revealed accumulation of radiolabelled LDL preparations in the carotid artery affected by atherosclerotic lesions. We developed a technique to rapidly oxidize LDL using copper and H2O2. Biodistribution data demonstrate that oxidized-LDL is rapidly cleared from circulation, is taken up mostly by organs rich in macrophages, and can be detected at the level of carotid plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0021-9150(96)05888-1DOI Listing

Publication Analysis

Top Keywords

ldl
9
oxidized ldl
8
vivo distribution
8
atherosclerotic lesions
8
developed technique
8
preparation biodistribution
4
biodistribution 99m
4
99m technetium
4
technetium labelled
4
labelled oxidized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!